Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To complete the probability distribution for the discrete random variable [tex]\(X\)[/tex], we need to determine the probabilities [tex]\(P(X=5)\)[/tex] and [tex]\(P(X=6)\)[/tex].
Given the existing probabilities:
[tex]\[ P(X=1) = 0.21 \][/tex]
[tex]\[ P(X=2) = 0.13 \][/tex]
[tex]\[ P(X=4) = 0.11 \][/tex]
The sum of all probabilities must equal 1. Therefore, we set up the equation:
[tex]\[ P(X=1) + P(X=2) + P(X=4) + P(X=5) + P(X=6) = 1 \][/tex]
Substituting the known values:
[tex]\[ 0.21 + 0.13 + 0.11 + P(X=5) + P(X=6) = 1 \][/tex]
Now, let's calculate the sum of the known probabilities:
[tex]\[ 0.21 + 0.13 + 0.11 = 0.45 \][/tex]
Next, we find the remaining probability:
[tex]\[ 1 - 0.45 = 0.55 \][/tex]
Assuming that the probabilities [tex]\(P(X=5)\)[/tex] and [tex]\(P(X=6)\)[/tex] are equal (since no other information is given), we divide the remaining probability equally between them:
[tex]\[ P(X=5) = P(X=6) = \frac{0.55}{2} = 0.275 \][/tex]
Therefore, the values for the probability distribution are:
[tex]\[ P(X=5) = 0.275 \][/tex]
[tex]\[ P(X=6) = 0.275 \][/tex]
The completed probability distribution is:
[tex]\[ \begin{tabular}{|c|c|} \hline Value $x$ of $X$ & $P(X=x)$ \\ \hline 1 & 0.21 \\ \hline 2 & 0.13 \\ \hline 4 & 0.11 \\ \hline 5 & 0.275 \\ \hline 6 & 0.275 \\ \hline \end{tabular} \][/tex]
Given the existing probabilities:
[tex]\[ P(X=1) = 0.21 \][/tex]
[tex]\[ P(X=2) = 0.13 \][/tex]
[tex]\[ P(X=4) = 0.11 \][/tex]
The sum of all probabilities must equal 1. Therefore, we set up the equation:
[tex]\[ P(X=1) + P(X=2) + P(X=4) + P(X=5) + P(X=6) = 1 \][/tex]
Substituting the known values:
[tex]\[ 0.21 + 0.13 + 0.11 + P(X=5) + P(X=6) = 1 \][/tex]
Now, let's calculate the sum of the known probabilities:
[tex]\[ 0.21 + 0.13 + 0.11 = 0.45 \][/tex]
Next, we find the remaining probability:
[tex]\[ 1 - 0.45 = 0.55 \][/tex]
Assuming that the probabilities [tex]\(P(X=5)\)[/tex] and [tex]\(P(X=6)\)[/tex] are equal (since no other information is given), we divide the remaining probability equally between them:
[tex]\[ P(X=5) = P(X=6) = \frac{0.55}{2} = 0.275 \][/tex]
Therefore, the values for the probability distribution are:
[tex]\[ P(X=5) = 0.275 \][/tex]
[tex]\[ P(X=6) = 0.275 \][/tex]
The completed probability distribution is:
[tex]\[ \begin{tabular}{|c|c|} \hline Value $x$ of $X$ & $P(X=x)$ \\ \hline 1 & 0.21 \\ \hline 2 & 0.13 \\ \hline 4 & 0.11 \\ \hline 5 & 0.275 \\ \hline 6 & 0.275 \\ \hline \end{tabular} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.