Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the correct null and alternate hypotheses for the given scenario, we need to follow a systematic approach.
1. Understanding the Claim:
Jonathan believes that his football team buddies watch less television than the average American.
2. Identifying the Population Mean:
The average time Americans watch television each weekday is given as 2.7 hours, with a standard deviation of 0.2 hours.
3. Sample Data:
Jonathan gathered data from 40 football teammates and calculated their mean television watching time to be 2.3 hours.
4. Formulating Hypotheses:
- The null hypothesis ( [tex]\(H_0\)[/tex] ) is a statement that there is no effect or no difference, and it is generally presumed to be true until statistical evidence indicates otherwise. In this context, the null hypothesis should reflect that the football team buddies do not watch less television than the average American, meaning their average [tex]\( \mu \)[/tex] is equal to 2.7 hours.
- The alternate hypothesis ( [tex]\(H_a\)[/tex] ) is what we want to test for; it represents Jonathan's belief. Therefore, it should state that the football team buddies watch less television than the average American, meaning their average [tex]\( \mu \)[/tex] is less than 2.7 hours.
Based on these points:
- The null hypothesis [tex]\( H_0 \)[/tex]: [tex]\( \mu = 2.7 \)[/tex]
- The alternate hypothesis [tex]\( H_a \)[/tex]: [tex]\( \mu < 2.7 \)[/tex]
Thus, the correct pair of hypotheses is:
[tex]\[ H_0: \mu = 2.7 \][/tex]
[tex]\[ H_a: \mu < 2.7 \][/tex]
From the given options, the correct answer is:
[tex]\[ H_0: \mu = 2.7 ; H_a: \mu < 2.7 \][/tex]
So, among the listed options, it should be:
[tex]\[ H_0: \mu = 2.7 ; H_a: \mu < 2.7 \][/tex]
1. Understanding the Claim:
Jonathan believes that his football team buddies watch less television than the average American.
2. Identifying the Population Mean:
The average time Americans watch television each weekday is given as 2.7 hours, with a standard deviation of 0.2 hours.
3. Sample Data:
Jonathan gathered data from 40 football teammates and calculated their mean television watching time to be 2.3 hours.
4. Formulating Hypotheses:
- The null hypothesis ( [tex]\(H_0\)[/tex] ) is a statement that there is no effect or no difference, and it is generally presumed to be true until statistical evidence indicates otherwise. In this context, the null hypothesis should reflect that the football team buddies do not watch less television than the average American, meaning their average [tex]\( \mu \)[/tex] is equal to 2.7 hours.
- The alternate hypothesis ( [tex]\(H_a\)[/tex] ) is what we want to test for; it represents Jonathan's belief. Therefore, it should state that the football team buddies watch less television than the average American, meaning their average [tex]\( \mu \)[/tex] is less than 2.7 hours.
Based on these points:
- The null hypothesis [tex]\( H_0 \)[/tex]: [tex]\( \mu = 2.7 \)[/tex]
- The alternate hypothesis [tex]\( H_a \)[/tex]: [tex]\( \mu < 2.7 \)[/tex]
Thus, the correct pair of hypotheses is:
[tex]\[ H_0: \mu = 2.7 \][/tex]
[tex]\[ H_a: \mu < 2.7 \][/tex]
From the given options, the correct answer is:
[tex]\[ H_0: \mu = 2.7 ; H_a: \mu < 2.7 \][/tex]
So, among the listed options, it should be:
[tex]\[ H_0: \mu = 2.7 ; H_a: \mu < 2.7 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.