Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the width of the prism, we will go through the following steps:
### Step 1: Find the volume of the rectangular prism
Given:
- Height (h) = 8 meters
- Base area (A) = 3 square meters (as provided/considered example)
The volume [tex]\( V \)[/tex] of a rectangular prism is given by the formula:
[tex]\[ V_{\text{prism}} = \text{base area} \times \text{height} \][/tex]
So,
[tex]\[ V_{\text{prism}} = 3 \, \text{m}^2 \times 8 \, \text{m} = 24 \, \text{m}^3 \][/tex]
Hence, the volume of the rectangular prism is:
[tex]\[ V_{\text{prism}} = 24 \, \text{m}^3 \][/tex]
### Step 2: Find the volume of the cylinder
Given:
- Height (h) = 8 meters
- Let the radius of the cylinder (r) be in meters
The volume [tex]\( V \)[/tex] of a cylinder is given by the formula:
[tex]\[ V_{\text{cylinder}} = \pi \times r^2 \times \text{height} \][/tex]
So,
[tex]\[ V_{\text{cylinder}} = \pi \times r^2 \times 8 \][/tex]
Given that the volume of the rectangular prism is:
[tex]\[ V_{\text{prism}} = 24 \, \text{m}^3 \][/tex]
### Step 3: Set the volumes equal to each other and solve for [tex]\( r \)[/tex]
Since the volumes are equal:
[tex]\[ 24 \, \text{m}^3 = \pi \times r^2 \times 8 \][/tex]
Solving for [tex]\( r^2 \)[/tex]:
[tex]\[ 24 = 8\pi r^2 \][/tex]
[tex]\[ 3 = \pi r^2 \][/tex]
[tex]\[ r^2 = \frac{3}{\pi} \][/tex]
[tex]\[ r = \sqrt{\frac{3}{\pi}} \][/tex]
Given that the calculation yields:
[tex]\[ r \approx 0.977 \text{ meters} \][/tex]
### Final Answer
Hence, the radius [tex]\( r \)[/tex] of the cylinder is approximately:
[tex]\[ r \approx 1.0 \, \text{meters} \][/tex] to the nearest tenth.
### Step 1: Find the volume of the rectangular prism
Given:
- Height (h) = 8 meters
- Base area (A) = 3 square meters (as provided/considered example)
The volume [tex]\( V \)[/tex] of a rectangular prism is given by the formula:
[tex]\[ V_{\text{prism}} = \text{base area} \times \text{height} \][/tex]
So,
[tex]\[ V_{\text{prism}} = 3 \, \text{m}^2 \times 8 \, \text{m} = 24 \, \text{m}^3 \][/tex]
Hence, the volume of the rectangular prism is:
[tex]\[ V_{\text{prism}} = 24 \, \text{m}^3 \][/tex]
### Step 2: Find the volume of the cylinder
Given:
- Height (h) = 8 meters
- Let the radius of the cylinder (r) be in meters
The volume [tex]\( V \)[/tex] of a cylinder is given by the formula:
[tex]\[ V_{\text{cylinder}} = \pi \times r^2 \times \text{height} \][/tex]
So,
[tex]\[ V_{\text{cylinder}} = \pi \times r^2 \times 8 \][/tex]
Given that the volume of the rectangular prism is:
[tex]\[ V_{\text{prism}} = 24 \, \text{m}^3 \][/tex]
### Step 3: Set the volumes equal to each other and solve for [tex]\( r \)[/tex]
Since the volumes are equal:
[tex]\[ 24 \, \text{m}^3 = \pi \times r^2 \times 8 \][/tex]
Solving for [tex]\( r^2 \)[/tex]:
[tex]\[ 24 = 8\pi r^2 \][/tex]
[tex]\[ 3 = \pi r^2 \][/tex]
[tex]\[ r^2 = \frac{3}{\pi} \][/tex]
[tex]\[ r = \sqrt{\frac{3}{\pi}} \][/tex]
Given that the calculation yields:
[tex]\[ r \approx 0.977 \text{ meters} \][/tex]
### Final Answer
Hence, the radius [tex]\( r \)[/tex] of the cylinder is approximately:
[tex]\[ r \approx 1.0 \, \text{meters} \][/tex] to the nearest tenth.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.