Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
### Step-by-Step Solution
Given Reaction:
[tex]\[C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l) \quad \Delta H = -2220 \text{ kJ}\][/tex]
Step 1: Determine the Type of Reaction
- The given [tex]\(\Delta H\)[/tex] for the reaction is [tex]\(-2220 \text{ kJ}\)[/tex].
- Since [tex]\(\Delta H\)[/tex] is negative, the reaction releases energy.
- Therefore, the reaction is exothermic.
Step 2: Calculate the Molar Mass of [tex]\(C_3H_8\)[/tex]
- Calculate the molar masses of Carbon (C) and Hydrogen (H):
- Atomic mass of Carbon (C): 12.01 g/mol
- Atomic mass of Hydrogen (H): 1.01 g/mol
- Molar mass of [tex]\(C_3H_8\)[/tex] (Propane):
[tex]\[ \text{Molar mass of } C_3H_8 = 3 \times 12.01 \text{ g/mol} + 8 \times 1.01 \text{ g/mol} = 36.03 \text{ g/mol} + 8.08 \text{ g/mol} = 44.11 \text{ g/mol} \][/tex]
Step 3: Calculate the Number of Moles of [tex]\(C_3H_8\)[/tex]
- Given mass of [tex]\(C_3H_8\)[/tex] is 86.1 g.
- Number of moles of [tex]\(C_3H_8\)[/tex]:
[tex]\[ \text{Moles of } C_3H_8 = \frac{\text{mass of } C_3H_8}{\text{molar mass of } C_3H_8} = \frac{86.1 \text{ g}}{44.11 \text{ g/mol}} = 1.951938335978236 \text{ moles} \][/tex]
Step 4: Calculate the Heat Released
- The heat released ([tex]\(\Delta H\)[/tex]) per mole of [tex]\(C_3H_8\)[/tex] is [tex]\(-2220 \text{ kJ}\)[/tex].
- Thus, for 1.951938335978236 moles of [tex]\(C_3H_8\)[/tex], the heat released is:
[tex]\[ \text{Heat released} = \text{moles of } C_3H_8 \times \Delta H = 1.951938335978236 \text{ moles} \times (-2220 \text{ kJ/mol}) = -4333.303105871684 \text{ kJ} \][/tex]
### Summary
[tex]\[ \begin{array}{|c|c|} \hline \text{This reaction is...} & \text{exothermic} \\ \hline \end{array} \][/tex]
When 86.1 g of [tex]\(C_3H_8\)[/tex] react, the reaction will release heat.
[tex]\[ \begin{array}{|c|c|} \hline \text{Will any heat be released or absorbed?} & \text{Yes, heat is released} \\ \hline \end{array} \][/tex]
### Conclusion
- The reaction is exothermic.
- When 86.1 g of [tex]\(C_3H_8\)[/tex] react, approximately [tex]\(-4333.3 \text{ kJ}\)[/tex] of heat will be released.
Given Reaction:
[tex]\[C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l) \quad \Delta H = -2220 \text{ kJ}\][/tex]
Step 1: Determine the Type of Reaction
- The given [tex]\(\Delta H\)[/tex] for the reaction is [tex]\(-2220 \text{ kJ}\)[/tex].
- Since [tex]\(\Delta H\)[/tex] is negative, the reaction releases energy.
- Therefore, the reaction is exothermic.
Step 2: Calculate the Molar Mass of [tex]\(C_3H_8\)[/tex]
- Calculate the molar masses of Carbon (C) and Hydrogen (H):
- Atomic mass of Carbon (C): 12.01 g/mol
- Atomic mass of Hydrogen (H): 1.01 g/mol
- Molar mass of [tex]\(C_3H_8\)[/tex] (Propane):
[tex]\[ \text{Molar mass of } C_3H_8 = 3 \times 12.01 \text{ g/mol} + 8 \times 1.01 \text{ g/mol} = 36.03 \text{ g/mol} + 8.08 \text{ g/mol} = 44.11 \text{ g/mol} \][/tex]
Step 3: Calculate the Number of Moles of [tex]\(C_3H_8\)[/tex]
- Given mass of [tex]\(C_3H_8\)[/tex] is 86.1 g.
- Number of moles of [tex]\(C_3H_8\)[/tex]:
[tex]\[ \text{Moles of } C_3H_8 = \frac{\text{mass of } C_3H_8}{\text{molar mass of } C_3H_8} = \frac{86.1 \text{ g}}{44.11 \text{ g/mol}} = 1.951938335978236 \text{ moles} \][/tex]
Step 4: Calculate the Heat Released
- The heat released ([tex]\(\Delta H\)[/tex]) per mole of [tex]\(C_3H_8\)[/tex] is [tex]\(-2220 \text{ kJ}\)[/tex].
- Thus, for 1.951938335978236 moles of [tex]\(C_3H_8\)[/tex], the heat released is:
[tex]\[ \text{Heat released} = \text{moles of } C_3H_8 \times \Delta H = 1.951938335978236 \text{ moles} \times (-2220 \text{ kJ/mol}) = -4333.303105871684 \text{ kJ} \][/tex]
### Summary
[tex]\[ \begin{array}{|c|c|} \hline \text{This reaction is...} & \text{exothermic} \\ \hline \end{array} \][/tex]
When 86.1 g of [tex]\(C_3H_8\)[/tex] react, the reaction will release heat.
[tex]\[ \begin{array}{|c|c|} \hline \text{Will any heat be released or absorbed?} & \text{Yes, heat is released} \\ \hline \end{array} \][/tex]
### Conclusion
- The reaction is exothermic.
- When 86.1 g of [tex]\(C_3H_8\)[/tex] react, approximately [tex]\(-4333.3 \text{ kJ}\)[/tex] of heat will be released.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.