Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
### Step-by-Step Solution
Given Reaction:
[tex]\[C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l) \quad \Delta H = -2220 \text{ kJ}\][/tex]
Step 1: Determine the Type of Reaction
- The given [tex]\(\Delta H\)[/tex] for the reaction is [tex]\(-2220 \text{ kJ}\)[/tex].
- Since [tex]\(\Delta H\)[/tex] is negative, the reaction releases energy.
- Therefore, the reaction is exothermic.
Step 2: Calculate the Molar Mass of [tex]\(C_3H_8\)[/tex]
- Calculate the molar masses of Carbon (C) and Hydrogen (H):
- Atomic mass of Carbon (C): 12.01 g/mol
- Atomic mass of Hydrogen (H): 1.01 g/mol
- Molar mass of [tex]\(C_3H_8\)[/tex] (Propane):
[tex]\[ \text{Molar mass of } C_3H_8 = 3 \times 12.01 \text{ g/mol} + 8 \times 1.01 \text{ g/mol} = 36.03 \text{ g/mol} + 8.08 \text{ g/mol} = 44.11 \text{ g/mol} \][/tex]
Step 3: Calculate the Number of Moles of [tex]\(C_3H_8\)[/tex]
- Given mass of [tex]\(C_3H_8\)[/tex] is 86.1 g.
- Number of moles of [tex]\(C_3H_8\)[/tex]:
[tex]\[ \text{Moles of } C_3H_8 = \frac{\text{mass of } C_3H_8}{\text{molar mass of } C_3H_8} = \frac{86.1 \text{ g}}{44.11 \text{ g/mol}} = 1.951938335978236 \text{ moles} \][/tex]
Step 4: Calculate the Heat Released
- The heat released ([tex]\(\Delta H\)[/tex]) per mole of [tex]\(C_3H_8\)[/tex] is [tex]\(-2220 \text{ kJ}\)[/tex].
- Thus, for 1.951938335978236 moles of [tex]\(C_3H_8\)[/tex], the heat released is:
[tex]\[ \text{Heat released} = \text{moles of } C_3H_8 \times \Delta H = 1.951938335978236 \text{ moles} \times (-2220 \text{ kJ/mol}) = -4333.303105871684 \text{ kJ} \][/tex]
### Summary
[tex]\[ \begin{array}{|c|c|} \hline \text{This reaction is...} & \text{exothermic} \\ \hline \end{array} \][/tex]
When 86.1 g of [tex]\(C_3H_8\)[/tex] react, the reaction will release heat.
[tex]\[ \begin{array}{|c|c|} \hline \text{Will any heat be released or absorbed?} & \text{Yes, heat is released} \\ \hline \end{array} \][/tex]
### Conclusion
- The reaction is exothermic.
- When 86.1 g of [tex]\(C_3H_8\)[/tex] react, approximately [tex]\(-4333.3 \text{ kJ}\)[/tex] of heat will be released.
Given Reaction:
[tex]\[C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(l) \quad \Delta H = -2220 \text{ kJ}\][/tex]
Step 1: Determine the Type of Reaction
- The given [tex]\(\Delta H\)[/tex] for the reaction is [tex]\(-2220 \text{ kJ}\)[/tex].
- Since [tex]\(\Delta H\)[/tex] is negative, the reaction releases energy.
- Therefore, the reaction is exothermic.
Step 2: Calculate the Molar Mass of [tex]\(C_3H_8\)[/tex]
- Calculate the molar masses of Carbon (C) and Hydrogen (H):
- Atomic mass of Carbon (C): 12.01 g/mol
- Atomic mass of Hydrogen (H): 1.01 g/mol
- Molar mass of [tex]\(C_3H_8\)[/tex] (Propane):
[tex]\[ \text{Molar mass of } C_3H_8 = 3 \times 12.01 \text{ g/mol} + 8 \times 1.01 \text{ g/mol} = 36.03 \text{ g/mol} + 8.08 \text{ g/mol} = 44.11 \text{ g/mol} \][/tex]
Step 3: Calculate the Number of Moles of [tex]\(C_3H_8\)[/tex]
- Given mass of [tex]\(C_3H_8\)[/tex] is 86.1 g.
- Number of moles of [tex]\(C_3H_8\)[/tex]:
[tex]\[ \text{Moles of } C_3H_8 = \frac{\text{mass of } C_3H_8}{\text{molar mass of } C_3H_8} = \frac{86.1 \text{ g}}{44.11 \text{ g/mol}} = 1.951938335978236 \text{ moles} \][/tex]
Step 4: Calculate the Heat Released
- The heat released ([tex]\(\Delta H\)[/tex]) per mole of [tex]\(C_3H_8\)[/tex] is [tex]\(-2220 \text{ kJ}\)[/tex].
- Thus, for 1.951938335978236 moles of [tex]\(C_3H_8\)[/tex], the heat released is:
[tex]\[ \text{Heat released} = \text{moles of } C_3H_8 \times \Delta H = 1.951938335978236 \text{ moles} \times (-2220 \text{ kJ/mol}) = -4333.303105871684 \text{ kJ} \][/tex]
### Summary
[tex]\[ \begin{array}{|c|c|} \hline \text{This reaction is...} & \text{exothermic} \\ \hline \end{array} \][/tex]
When 86.1 g of [tex]\(C_3H_8\)[/tex] react, the reaction will release heat.
[tex]\[ \begin{array}{|c|c|} \hline \text{Will any heat be released or absorbed?} & \text{Yes, heat is released} \\ \hline \end{array} \][/tex]
### Conclusion
- The reaction is exothermic.
- When 86.1 g of [tex]\(C_3H_8\)[/tex] react, approximately [tex]\(-4333.3 \text{ kJ}\)[/tex] of heat will be released.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.