Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the exact value of the definite integral [tex]\(\int_{-2}^6 \frac{4}{\sqrt[3]{x^2}} \, dx\)[/tex], we need to follow these steps using the Fundamental Theorem of Calculus.
1. Rewrite the integrand:
[tex]\[\frac{4}{\sqrt[3]{x^2}} = 4 \cdot x^{-2/3}\][/tex]
2. Find the antiderivative:
To find the antiderivative of [tex]\(4x^{-2/3}\)[/tex], we apply the integration rule for power functions:
[tex]\[\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad \text{for } n \neq -1\][/tex]
Here, [tex]\(n = -\frac{2}{3}\)[/tex], so we get:
[tex]\[ \int 4x^{-2/3} \, dx = 4 \cdot \int x^{-2/3} \, dx = 4 \cdot \left(\frac{x^{(-2/3) + 1}}{(-2/3) + 1}\right) + C = 4 \cdot \left(\frac{x^{1/3}}{1/3}\right) + C = 4 \cdot 3x^{1/3} + C = 12x^{1/3} + C \][/tex]
3. Apply the limits:
Now we evaluate this antiderivative from [tex]\(-2\)[/tex] to [tex]\(6\)[/tex]:
[tex]\[ \left[ 12x^{1/3} \right]_{-2}^{6} = 12 \left(6^{1/3}\right) - 12 \left((-2)^{1/3}\right) \][/tex]
4. Analyze the cube roots:
The cube root of [tex]\(6\)[/tex] is straightforward. However, the cube root of [tex]\(-2\)[/tex] can be tricky. For real numbers, [tex]\((-2)^{1/3}\)[/tex] is defined as the real cube root of [tex]\(-2\)[/tex], which is approximately [tex]\(-1.2599\)[/tex].
Thus, we need to carefully consider the real part in this specific case.
Now, let's contrast the evaluated values:
[tex]\[ 12 \left(6^{1/3}\right) = 12 (1.817) \approx 21.804 \][/tex]
[tex]\[ 12 \left((-2)^{1/3}\right) = 12 (-1.259) = -15.108 \][/tex]
5. Summarize the integral value:
Summing these values:
[tex]\[ \left[ 12x^{1/3} \right]_{-2}^{6} = 12 \cdot 6^{1/3} - 12 \cdot (-2^{1/3}) = 12 \left(6^{1/3}\right) + 12 \left(2^{1/3}\right) = 12 \left( 6^{1/3} + 2^{1/3} \right) \][/tex]
From the given options, the correct answer is:
[tex]\[ \boxed{12(\sqrt[3]{6}+\sqrt[3]{2})} \][/tex]
1. Rewrite the integrand:
[tex]\[\frac{4}{\sqrt[3]{x^2}} = 4 \cdot x^{-2/3}\][/tex]
2. Find the antiderivative:
To find the antiderivative of [tex]\(4x^{-2/3}\)[/tex], we apply the integration rule for power functions:
[tex]\[\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad \text{for } n \neq -1\][/tex]
Here, [tex]\(n = -\frac{2}{3}\)[/tex], so we get:
[tex]\[ \int 4x^{-2/3} \, dx = 4 \cdot \int x^{-2/3} \, dx = 4 \cdot \left(\frac{x^{(-2/3) + 1}}{(-2/3) + 1}\right) + C = 4 \cdot \left(\frac{x^{1/3}}{1/3}\right) + C = 4 \cdot 3x^{1/3} + C = 12x^{1/3} + C \][/tex]
3. Apply the limits:
Now we evaluate this antiderivative from [tex]\(-2\)[/tex] to [tex]\(6\)[/tex]:
[tex]\[ \left[ 12x^{1/3} \right]_{-2}^{6} = 12 \left(6^{1/3}\right) - 12 \left((-2)^{1/3}\right) \][/tex]
4. Analyze the cube roots:
The cube root of [tex]\(6\)[/tex] is straightforward. However, the cube root of [tex]\(-2\)[/tex] can be tricky. For real numbers, [tex]\((-2)^{1/3}\)[/tex] is defined as the real cube root of [tex]\(-2\)[/tex], which is approximately [tex]\(-1.2599\)[/tex].
Thus, we need to carefully consider the real part in this specific case.
Now, let's contrast the evaluated values:
[tex]\[ 12 \left(6^{1/3}\right) = 12 (1.817) \approx 21.804 \][/tex]
[tex]\[ 12 \left((-2)^{1/3}\right) = 12 (-1.259) = -15.108 \][/tex]
5. Summarize the integral value:
Summing these values:
[tex]\[ \left[ 12x^{1/3} \right]_{-2}^{6} = 12 \cdot 6^{1/3} - 12 \cdot (-2^{1/3}) = 12 \left(6^{1/3}\right) + 12 \left(2^{1/3}\right) = 12 \left( 6^{1/3} + 2^{1/3} \right) \][/tex]
From the given options, the correct answer is:
[tex]\[ \boxed{12(\sqrt[3]{6}+\sqrt[3]{2})} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.