Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the exact value of the definite integral [tex]\(\int_{-2}^6 \frac{4}{\sqrt[3]{x^2}} \, dx\)[/tex], we need to follow these steps using the Fundamental Theorem of Calculus.
1. Rewrite the integrand:
[tex]\[\frac{4}{\sqrt[3]{x^2}} = 4 \cdot x^{-2/3}\][/tex]
2. Find the antiderivative:
To find the antiderivative of [tex]\(4x^{-2/3}\)[/tex], we apply the integration rule for power functions:
[tex]\[\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad \text{for } n \neq -1\][/tex]
Here, [tex]\(n = -\frac{2}{3}\)[/tex], so we get:
[tex]\[ \int 4x^{-2/3} \, dx = 4 \cdot \int x^{-2/3} \, dx = 4 \cdot \left(\frac{x^{(-2/3) + 1}}{(-2/3) + 1}\right) + C = 4 \cdot \left(\frac{x^{1/3}}{1/3}\right) + C = 4 \cdot 3x^{1/3} + C = 12x^{1/3} + C \][/tex]
3. Apply the limits:
Now we evaluate this antiderivative from [tex]\(-2\)[/tex] to [tex]\(6\)[/tex]:
[tex]\[ \left[ 12x^{1/3} \right]_{-2}^{6} = 12 \left(6^{1/3}\right) - 12 \left((-2)^{1/3}\right) \][/tex]
4. Analyze the cube roots:
The cube root of [tex]\(6\)[/tex] is straightforward. However, the cube root of [tex]\(-2\)[/tex] can be tricky. For real numbers, [tex]\((-2)^{1/3}\)[/tex] is defined as the real cube root of [tex]\(-2\)[/tex], which is approximately [tex]\(-1.2599\)[/tex].
Thus, we need to carefully consider the real part in this specific case.
Now, let's contrast the evaluated values:
[tex]\[ 12 \left(6^{1/3}\right) = 12 (1.817) \approx 21.804 \][/tex]
[tex]\[ 12 \left((-2)^{1/3}\right) = 12 (-1.259) = -15.108 \][/tex]
5. Summarize the integral value:
Summing these values:
[tex]\[ \left[ 12x^{1/3} \right]_{-2}^{6} = 12 \cdot 6^{1/3} - 12 \cdot (-2^{1/3}) = 12 \left(6^{1/3}\right) + 12 \left(2^{1/3}\right) = 12 \left( 6^{1/3} + 2^{1/3} \right) \][/tex]
From the given options, the correct answer is:
[tex]\[ \boxed{12(\sqrt[3]{6}+\sqrt[3]{2})} \][/tex]
1. Rewrite the integrand:
[tex]\[\frac{4}{\sqrt[3]{x^2}} = 4 \cdot x^{-2/3}\][/tex]
2. Find the antiderivative:
To find the antiderivative of [tex]\(4x^{-2/3}\)[/tex], we apply the integration rule for power functions:
[tex]\[\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad \text{for } n \neq -1\][/tex]
Here, [tex]\(n = -\frac{2}{3}\)[/tex], so we get:
[tex]\[ \int 4x^{-2/3} \, dx = 4 \cdot \int x^{-2/3} \, dx = 4 \cdot \left(\frac{x^{(-2/3) + 1}}{(-2/3) + 1}\right) + C = 4 \cdot \left(\frac{x^{1/3}}{1/3}\right) + C = 4 \cdot 3x^{1/3} + C = 12x^{1/3} + C \][/tex]
3. Apply the limits:
Now we evaluate this antiderivative from [tex]\(-2\)[/tex] to [tex]\(6\)[/tex]:
[tex]\[ \left[ 12x^{1/3} \right]_{-2}^{6} = 12 \left(6^{1/3}\right) - 12 \left((-2)^{1/3}\right) \][/tex]
4. Analyze the cube roots:
The cube root of [tex]\(6\)[/tex] is straightforward. However, the cube root of [tex]\(-2\)[/tex] can be tricky. For real numbers, [tex]\((-2)^{1/3}\)[/tex] is defined as the real cube root of [tex]\(-2\)[/tex], which is approximately [tex]\(-1.2599\)[/tex].
Thus, we need to carefully consider the real part in this specific case.
Now, let's contrast the evaluated values:
[tex]\[ 12 \left(6^{1/3}\right) = 12 (1.817) \approx 21.804 \][/tex]
[tex]\[ 12 \left((-2)^{1/3}\right) = 12 (-1.259) = -15.108 \][/tex]
5. Summarize the integral value:
Summing these values:
[tex]\[ \left[ 12x^{1/3} \right]_{-2}^{6} = 12 \cdot 6^{1/3} - 12 \cdot (-2^{1/3}) = 12 \left(6^{1/3}\right) + 12 \left(2^{1/3}\right) = 12 \left( 6^{1/3} + 2^{1/3} \right) \][/tex]
From the given options, the correct answer is:
[tex]\[ \boxed{12(\sqrt[3]{6}+\sqrt[3]{2})} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.