Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the exact value of the definite integral [tex]\(\int_{-2}^6 \frac{4}{\sqrt[3]{x^2}} \, dx\)[/tex], we need to follow these steps using the Fundamental Theorem of Calculus.
1. Rewrite the integrand:
[tex]\[\frac{4}{\sqrt[3]{x^2}} = 4 \cdot x^{-2/3}\][/tex]
2. Find the antiderivative:
To find the antiderivative of [tex]\(4x^{-2/3}\)[/tex], we apply the integration rule for power functions:
[tex]\[\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad \text{for } n \neq -1\][/tex]
Here, [tex]\(n = -\frac{2}{3}\)[/tex], so we get:
[tex]\[ \int 4x^{-2/3} \, dx = 4 \cdot \int x^{-2/3} \, dx = 4 \cdot \left(\frac{x^{(-2/3) + 1}}{(-2/3) + 1}\right) + C = 4 \cdot \left(\frac{x^{1/3}}{1/3}\right) + C = 4 \cdot 3x^{1/3} + C = 12x^{1/3} + C \][/tex]
3. Apply the limits:
Now we evaluate this antiderivative from [tex]\(-2\)[/tex] to [tex]\(6\)[/tex]:
[tex]\[ \left[ 12x^{1/3} \right]_{-2}^{6} = 12 \left(6^{1/3}\right) - 12 \left((-2)^{1/3}\right) \][/tex]
4. Analyze the cube roots:
The cube root of [tex]\(6\)[/tex] is straightforward. However, the cube root of [tex]\(-2\)[/tex] can be tricky. For real numbers, [tex]\((-2)^{1/3}\)[/tex] is defined as the real cube root of [tex]\(-2\)[/tex], which is approximately [tex]\(-1.2599\)[/tex].
Thus, we need to carefully consider the real part in this specific case.
Now, let's contrast the evaluated values:
[tex]\[ 12 \left(6^{1/3}\right) = 12 (1.817) \approx 21.804 \][/tex]
[tex]\[ 12 \left((-2)^{1/3}\right) = 12 (-1.259) = -15.108 \][/tex]
5. Summarize the integral value:
Summing these values:
[tex]\[ \left[ 12x^{1/3} \right]_{-2}^{6} = 12 \cdot 6^{1/3} - 12 \cdot (-2^{1/3}) = 12 \left(6^{1/3}\right) + 12 \left(2^{1/3}\right) = 12 \left( 6^{1/3} + 2^{1/3} \right) \][/tex]
From the given options, the correct answer is:
[tex]\[ \boxed{12(\sqrt[3]{6}+\sqrt[3]{2})} \][/tex]
1. Rewrite the integrand:
[tex]\[\frac{4}{\sqrt[3]{x^2}} = 4 \cdot x^{-2/3}\][/tex]
2. Find the antiderivative:
To find the antiderivative of [tex]\(4x^{-2/3}\)[/tex], we apply the integration rule for power functions:
[tex]\[\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad \text{for } n \neq -1\][/tex]
Here, [tex]\(n = -\frac{2}{3}\)[/tex], so we get:
[tex]\[ \int 4x^{-2/3} \, dx = 4 \cdot \int x^{-2/3} \, dx = 4 \cdot \left(\frac{x^{(-2/3) + 1}}{(-2/3) + 1}\right) + C = 4 \cdot \left(\frac{x^{1/3}}{1/3}\right) + C = 4 \cdot 3x^{1/3} + C = 12x^{1/3} + C \][/tex]
3. Apply the limits:
Now we evaluate this antiderivative from [tex]\(-2\)[/tex] to [tex]\(6\)[/tex]:
[tex]\[ \left[ 12x^{1/3} \right]_{-2}^{6} = 12 \left(6^{1/3}\right) - 12 \left((-2)^{1/3}\right) \][/tex]
4. Analyze the cube roots:
The cube root of [tex]\(6\)[/tex] is straightforward. However, the cube root of [tex]\(-2\)[/tex] can be tricky. For real numbers, [tex]\((-2)^{1/3}\)[/tex] is defined as the real cube root of [tex]\(-2\)[/tex], which is approximately [tex]\(-1.2599\)[/tex].
Thus, we need to carefully consider the real part in this specific case.
Now, let's contrast the evaluated values:
[tex]\[ 12 \left(6^{1/3}\right) = 12 (1.817) \approx 21.804 \][/tex]
[tex]\[ 12 \left((-2)^{1/3}\right) = 12 (-1.259) = -15.108 \][/tex]
5. Summarize the integral value:
Summing these values:
[tex]\[ \left[ 12x^{1/3} \right]_{-2}^{6} = 12 \cdot 6^{1/3} - 12 \cdot (-2^{1/3}) = 12 \left(6^{1/3}\right) + 12 \left(2^{1/3}\right) = 12 \left( 6^{1/3} + 2^{1/3} \right) \][/tex]
From the given options, the correct answer is:
[tex]\[ \boxed{12(\sqrt[3]{6}+\sqrt[3]{2})} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.