Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the exact value of the definite integral [tex]\(\int_2^5 \frac{3}{\sqrt{x}} \, dx\)[/tex], we will use the Fundamental Theorem of Calculus. Here's a step-by-step solution:
1. Identify the integrand:
The integrand is [tex]\(\frac{3}{\sqrt{x}}\)[/tex].
2. Find the antiderivative:
To find the antiderivative, we need to rewrite the integrand in a more convenient form. Note that [tex]\(\frac{3}{\sqrt{x}} = 3x^{-1/2}\)[/tex].
We use the general power rule for integration: [tex]\(\int x^n \, dx = \frac{x^{n+1}}{n+1} + C\)[/tex], where [tex]\(n \neq -1\)[/tex].
For [tex]\(n = -\frac{1}{2}\)[/tex]:
[tex]\[ \int 3x^{-1/2} \, dx = 3 \int x^{-1/2} \, dx \][/tex]
[tex]\[ = 3 \cdot \left( \frac{x^{(-1/2)+1}}{(-1/2)+1} \right) + C \][/tex]
[tex]\[ = 3 \cdot \left( \frac{x^{1/2}}{1/2} \right) + C \][/tex]
[tex]\[ = 3 \cdot 2x^{1/2} + C \][/tex]
[tex]\[ = 6\sqrt{x} + C \][/tex]
Therefore, the antiderivative of [tex]\(\frac{3}{\sqrt{x}}\)[/tex] is [tex]\(6\sqrt{x}\)[/tex].
3. Evaluate the definite integral:
We now evaluate the antiderivative at the upper and lower limits and subtract:
[tex]\[ \int_2^5 \frac{3}{\sqrt{x}} \, dx = \left[ 6\sqrt{x} \right]_2^5 \][/tex]
[tex]\[ = 6\sqrt{5} - 6\sqrt{2} \][/tex]
[tex]\[ = 6(\sqrt{5} - \sqrt{2}) \][/tex]
4. Compare with the provided options:
The correct expression is [tex]\(6(\sqrt{5} - \sqrt{2})\)[/tex], which corresponds to option C.
Therefore, the exact value of [tex]\(\int_2^5 \frac{3}{\sqrt{x}} \, dx\)[/tex] is:
[tex]\[ \boxed{6(\sqrt{5} - \sqrt{2})} \][/tex]
1. Identify the integrand:
The integrand is [tex]\(\frac{3}{\sqrt{x}}\)[/tex].
2. Find the antiderivative:
To find the antiderivative, we need to rewrite the integrand in a more convenient form. Note that [tex]\(\frac{3}{\sqrt{x}} = 3x^{-1/2}\)[/tex].
We use the general power rule for integration: [tex]\(\int x^n \, dx = \frac{x^{n+1}}{n+1} + C\)[/tex], where [tex]\(n \neq -1\)[/tex].
For [tex]\(n = -\frac{1}{2}\)[/tex]:
[tex]\[ \int 3x^{-1/2} \, dx = 3 \int x^{-1/2} \, dx \][/tex]
[tex]\[ = 3 \cdot \left( \frac{x^{(-1/2)+1}}{(-1/2)+1} \right) + C \][/tex]
[tex]\[ = 3 \cdot \left( \frac{x^{1/2}}{1/2} \right) + C \][/tex]
[tex]\[ = 3 \cdot 2x^{1/2} + C \][/tex]
[tex]\[ = 6\sqrt{x} + C \][/tex]
Therefore, the antiderivative of [tex]\(\frac{3}{\sqrt{x}}\)[/tex] is [tex]\(6\sqrt{x}\)[/tex].
3. Evaluate the definite integral:
We now evaluate the antiderivative at the upper and lower limits and subtract:
[tex]\[ \int_2^5 \frac{3}{\sqrt{x}} \, dx = \left[ 6\sqrt{x} \right]_2^5 \][/tex]
[tex]\[ = 6\sqrt{5} - 6\sqrt{2} \][/tex]
[tex]\[ = 6(\sqrt{5} - \sqrt{2}) \][/tex]
4. Compare with the provided options:
The correct expression is [tex]\(6(\sqrt{5} - \sqrt{2})\)[/tex], which corresponds to option C.
Therefore, the exact value of [tex]\(\int_2^5 \frac{3}{\sqrt{x}} \, dx\)[/tex] is:
[tex]\[ \boxed{6(\sqrt{5} - \sqrt{2})} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.