At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

A charge of [tex][tex]$-4.33 \times 10^{-6} C$[/tex][/tex] is [tex]0.525 m[/tex] from a charge of [tex][tex]$-7.81 \times 10^{-4} C$[/tex][/tex]. What is their electric potential energy?

Include the correct sign (+ or -).

(Unit: J)

Sagot :

To find the electric potential energy between two point charges, we use the formula:

[tex]\[ U = k \frac{q_1 q_2}{r} \][/tex]

where:
- [tex]\( U \)[/tex] is the electric potential energy,
- [tex]\( k \)[/tex] is Coulomb’s constant ([tex]\( 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex]),
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges, and
- [tex]\( r \)[/tex] is the distance between the two charges.

In this problem, we are given:
- [tex]\( q_1 = -4.33 \times 10^{-6} \, \text{C} \)[/tex],
- [tex]\( q_2 = -7.81 \times 10^{-4} \, \text{C} \)[/tex],
- [tex]\( r = 0.525 \, \text{m} \)[/tex].

Substituting these values into the formula, we get:

[tex]\[ U = 8.99 \times 10^9 \frac{(-4.33 \times 10^{-6})(-7.81 \times 10^{-4})}{0.525} \][/tex]

Simplifying inside the fraction first:

[tex]\[ q_1 q_2 = (-4.33 \times 10^{-6}) \times (-7.81 \times 10^{-4}) = 33.7973 \times 10^{-10} = 3.37973 \times 10^{-9} \, \text{C}^2 \][/tex]
(The product of two negative charges is positive.)

Now, divide this product by the distance:

[tex]\[ \frac{3.37973 \times 10^{-9}}{0.525} = 6.43853333333 \times 10^{-9} \][/tex]

Finally, multiply by Coulomb’s constant:

[tex]\[ U = 8.99 \times 10^9 \times 6.43853333333 \times 10^{-9} \approx 57.908100380952376 \, \text{J} \][/tex]

Thus, the electric potential energy between the charges is approximately:

[tex]\[ U \approx 57.91 \, \text{J} \][/tex]

Since the two charges are both negative, their product is positive, and thus the electric potential energy is positive. Therefore, the final answer is:

[tex]\[ U = 57.91 \, \text{J} \][/tex]