At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the electric potential energy between two point charges, we use the formula:
[tex]\[ U = k \frac{q_1 q_2}{r} \][/tex]
where:
- [tex]\( U \)[/tex] is the electric potential energy,
- [tex]\( k \)[/tex] is Coulomb’s constant ([tex]\( 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex]),
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges, and
- [tex]\( r \)[/tex] is the distance between the two charges.
In this problem, we are given:
- [tex]\( q_1 = -4.33 \times 10^{-6} \, \text{C} \)[/tex],
- [tex]\( q_2 = -7.81 \times 10^{-4} \, \text{C} \)[/tex],
- [tex]\( r = 0.525 \, \text{m} \)[/tex].
Substituting these values into the formula, we get:
[tex]\[ U = 8.99 \times 10^9 \frac{(-4.33 \times 10^{-6})(-7.81 \times 10^{-4})}{0.525} \][/tex]
Simplifying inside the fraction first:
[tex]\[ q_1 q_2 = (-4.33 \times 10^{-6}) \times (-7.81 \times 10^{-4}) = 33.7973 \times 10^{-10} = 3.37973 \times 10^{-9} \, \text{C}^2 \][/tex]
(The product of two negative charges is positive.)
Now, divide this product by the distance:
[tex]\[ \frac{3.37973 \times 10^{-9}}{0.525} = 6.43853333333 \times 10^{-9} \][/tex]
Finally, multiply by Coulomb’s constant:
[tex]\[ U = 8.99 \times 10^9 \times 6.43853333333 \times 10^{-9} \approx 57.908100380952376 \, \text{J} \][/tex]
Thus, the electric potential energy between the charges is approximately:
[tex]\[ U \approx 57.91 \, \text{J} \][/tex]
Since the two charges are both negative, their product is positive, and thus the electric potential energy is positive. Therefore, the final answer is:
[tex]\[ U = 57.91 \, \text{J} \][/tex]
[tex]\[ U = k \frac{q_1 q_2}{r} \][/tex]
where:
- [tex]\( U \)[/tex] is the electric potential energy,
- [tex]\( k \)[/tex] is Coulomb’s constant ([tex]\( 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 / \text{C}^2 \)[/tex]),
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges, and
- [tex]\( r \)[/tex] is the distance between the two charges.
In this problem, we are given:
- [tex]\( q_1 = -4.33 \times 10^{-6} \, \text{C} \)[/tex],
- [tex]\( q_2 = -7.81 \times 10^{-4} \, \text{C} \)[/tex],
- [tex]\( r = 0.525 \, \text{m} \)[/tex].
Substituting these values into the formula, we get:
[tex]\[ U = 8.99 \times 10^9 \frac{(-4.33 \times 10^{-6})(-7.81 \times 10^{-4})}{0.525} \][/tex]
Simplifying inside the fraction first:
[tex]\[ q_1 q_2 = (-4.33 \times 10^{-6}) \times (-7.81 \times 10^{-4}) = 33.7973 \times 10^{-10} = 3.37973 \times 10^{-9} \, \text{C}^2 \][/tex]
(The product of two negative charges is positive.)
Now, divide this product by the distance:
[tex]\[ \frac{3.37973 \times 10^{-9}}{0.525} = 6.43853333333 \times 10^{-9} \][/tex]
Finally, multiply by Coulomb’s constant:
[tex]\[ U = 8.99 \times 10^9 \times 6.43853333333 \times 10^{-9} \approx 57.908100380952376 \, \text{J} \][/tex]
Thus, the electric potential energy between the charges is approximately:
[tex]\[ U \approx 57.91 \, \text{J} \][/tex]
Since the two charges are both negative, their product is positive, and thus the electric potential energy is positive. Therefore, the final answer is:
[tex]\[ U = 57.91 \, \text{J} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.