Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find [tex]\( f(x) \)[/tex] and evaluate [tex]\( f(3) \)[/tex], follow these steps:
1. Identify [tex]\( F(x) \)[/tex]:
The function given is [tex]\( F(x) = 12 \ln(x) + 1 \)[/tex]. This function is the antiderivative of [tex]\( f(x) \)[/tex].
2. Differentiate [tex]\( F(x) \)[/tex]:
To find [tex]\( f(x) \)[/tex], we need to take the derivative of [tex]\( F(x) \)[/tex].
- Recall the property of derivatives: [tex]\(\frac{d}{dx} [\ln(x)] = \frac{1}{x}\)[/tex].
- Using the constant multiple rule and the sum rule, differentiate [tex]\( F(x) \)[/tex] term by term:
[tex]\[ F(x) = 12 \ln(x) + 1 \][/tex]
[tex]\[ \frac{d}{dx}[F(x)] = \frac{d}{dx}[12 \ln(x)] + \frac{d}{dx}[1] \][/tex]
- The derivative of [tex]\( 12 \ln(x) \)[/tex] is [tex]\( 12 \cdot \frac{1}{x} = \frac{12}{x} \)[/tex].
- The derivative of the constant [tex]\( 1 \)[/tex] is [tex]\( 0 \)[/tex].
Therefore,
[tex]\[ f(x) = \frac{12}{x} \][/tex]
3. Evaluate [tex]\( f(3) \)[/tex]:
Substitute [tex]\( x = 3 \)[/tex] into the expression for [tex]\( f(x) \)[/tex]:
[tex]\[ f(3) = \frac{12}{3} \][/tex]
Simplifying this gives:
[tex]\[ f(3) = 4 \][/tex]
The final answers are:
[tex]\[ f(x) = \frac{12}{x} \][/tex]
[tex]\[ f(3) = 4 \][/tex]
1. Identify [tex]\( F(x) \)[/tex]:
The function given is [tex]\( F(x) = 12 \ln(x) + 1 \)[/tex]. This function is the antiderivative of [tex]\( f(x) \)[/tex].
2. Differentiate [tex]\( F(x) \)[/tex]:
To find [tex]\( f(x) \)[/tex], we need to take the derivative of [tex]\( F(x) \)[/tex].
- Recall the property of derivatives: [tex]\(\frac{d}{dx} [\ln(x)] = \frac{1}{x}\)[/tex].
- Using the constant multiple rule and the sum rule, differentiate [tex]\( F(x) \)[/tex] term by term:
[tex]\[ F(x) = 12 \ln(x) + 1 \][/tex]
[tex]\[ \frac{d}{dx}[F(x)] = \frac{d}{dx}[12 \ln(x)] + \frac{d}{dx}[1] \][/tex]
- The derivative of [tex]\( 12 \ln(x) \)[/tex] is [tex]\( 12 \cdot \frac{1}{x} = \frac{12}{x} \)[/tex].
- The derivative of the constant [tex]\( 1 \)[/tex] is [tex]\( 0 \)[/tex].
Therefore,
[tex]\[ f(x) = \frac{12}{x} \][/tex]
3. Evaluate [tex]\( f(3) \)[/tex]:
Substitute [tex]\( x = 3 \)[/tex] into the expression for [tex]\( f(x) \)[/tex]:
[tex]\[ f(3) = \frac{12}{3} \][/tex]
Simplifying this gives:
[tex]\[ f(3) = 4 \][/tex]
The final answers are:
[tex]\[ f(x) = \frac{12}{x} \][/tex]
[tex]\[ f(3) = 4 \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.