Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the exact value of the integral [tex]\(\int_{-2}^6 \frac{4}{\sqrt[3]{x^2}} \, dx\)[/tex], let's follow these steps:
1. Rewrite the integrand:
The given integral is:
[tex]\[ \int_{-2}^6 \frac{4}{\sqrt[3]{x^2}} \, dx \][/tex]
Notice that [tex]\(\sqrt[3]{x^2}\)[/tex] can be rewritten using exponent notation:
[tex]\[ \sqrt[3]{x^2} = (x^2)^{1/3} = x^{2/3} \][/tex]
Therefore, the integrand can be rewritten as:
[tex]\[ \frac{4}{x^{2/3}} \][/tex]
This can be further simplified to:
[tex]\[ 4 x^{-2/3} \][/tex]
2. Set up the integral:
The integral now becomes:
[tex]\[ \int_{-2}^6 4 x^{-2/3} \, dx \][/tex]
3. Apply the power rule for integration:
To integrate [tex]\(x^n\)[/tex], where [tex]\(n \neq -1\)[/tex], we use the formula:
[tex]\[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \][/tex]
In our case, [tex]\(n = -\frac{2}{3}\)[/tex]. Applying the rule, we get:
[tex]\[ \int x^{-\frac{2}{3}} \, dx = \frac{x^{1 - \frac{2}{3}}}{1 - \frac{2}{3}} + C = \frac{x^{\frac{1}{3}}}{\frac{1}{3}} + C = 3 x^{\frac{1}{3}} + C \][/tex]
Since our integrand is [tex]\(4 x^{-\frac{2}{3}}\)[/tex], we multiply the above result by 4:
[tex]\[ \int 4 x^{-\frac{2}{3}} \, dx = 4 \left( 3 x^{\frac{1}{3}} \right) + C = 12 x^{\frac{1}{3}} + C \][/tex]
4. Evaluate the definite integral:
We now need to evaluate this antiderivative over the interval [tex]\([-2, 6]\)[/tex]:
[tex]\[ \left[ 12 x^{\frac{1}{3}} \right]_{-2}^{6} \][/tex]
Evaluate at the upper limit [tex]\(x = 6\)[/tex]:
[tex]\[ 12 (6^{\frac{1}{3}}) \][/tex]
Evaluate at the lower limit [tex]\(x = -2\)[/tex]:
[tex]\[ 12 ((-2)^{\frac{1}{3}}) \][/tex]
Combining these, we get:
[tex]\[ 12 (6^{\frac{1}{3}}) - 12 ((-2)^{\frac{1}{3}}) \][/tex]
5. Simplify the expressions:
Calculate [tex]\(6^{\frac{1}{3}}\)[/tex] and [tex]\((-2)^{\frac{1}{3}}\)[/tex]:
[tex]\[ 12 (6^{\frac{1}{3}}) - 12 ((-2)^{\frac{1}{3}}) \][/tex]
These calculations result in:
[tex]\[ 12 \cdot 1.81712 - 12 \cdot (-1.25992) \][/tex]
[tex]\[ 12 \cdot 1.81712 + 12 \cdot 1.25992 = 21.8054 + 15.119 = 36.9244 \][/tex]
Hence, the exact value of the integral [tex]\(\int_{-2}^6 \frac{4}{\sqrt[3]{x^2}} \, dx\)[/tex] is:
[tex]\[ \boxed{36.9244997127241} \][/tex]
1. Rewrite the integrand:
The given integral is:
[tex]\[ \int_{-2}^6 \frac{4}{\sqrt[3]{x^2}} \, dx \][/tex]
Notice that [tex]\(\sqrt[3]{x^2}\)[/tex] can be rewritten using exponent notation:
[tex]\[ \sqrt[3]{x^2} = (x^2)^{1/3} = x^{2/3} \][/tex]
Therefore, the integrand can be rewritten as:
[tex]\[ \frac{4}{x^{2/3}} \][/tex]
This can be further simplified to:
[tex]\[ 4 x^{-2/3} \][/tex]
2. Set up the integral:
The integral now becomes:
[tex]\[ \int_{-2}^6 4 x^{-2/3} \, dx \][/tex]
3. Apply the power rule for integration:
To integrate [tex]\(x^n\)[/tex], where [tex]\(n \neq -1\)[/tex], we use the formula:
[tex]\[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \][/tex]
In our case, [tex]\(n = -\frac{2}{3}\)[/tex]. Applying the rule, we get:
[tex]\[ \int x^{-\frac{2}{3}} \, dx = \frac{x^{1 - \frac{2}{3}}}{1 - \frac{2}{3}} + C = \frac{x^{\frac{1}{3}}}{\frac{1}{3}} + C = 3 x^{\frac{1}{3}} + C \][/tex]
Since our integrand is [tex]\(4 x^{-\frac{2}{3}}\)[/tex], we multiply the above result by 4:
[tex]\[ \int 4 x^{-\frac{2}{3}} \, dx = 4 \left( 3 x^{\frac{1}{3}} \right) + C = 12 x^{\frac{1}{3}} + C \][/tex]
4. Evaluate the definite integral:
We now need to evaluate this antiderivative over the interval [tex]\([-2, 6]\)[/tex]:
[tex]\[ \left[ 12 x^{\frac{1}{3}} \right]_{-2}^{6} \][/tex]
Evaluate at the upper limit [tex]\(x = 6\)[/tex]:
[tex]\[ 12 (6^{\frac{1}{3}}) \][/tex]
Evaluate at the lower limit [tex]\(x = -2\)[/tex]:
[tex]\[ 12 ((-2)^{\frac{1}{3}}) \][/tex]
Combining these, we get:
[tex]\[ 12 (6^{\frac{1}{3}}) - 12 ((-2)^{\frac{1}{3}}) \][/tex]
5. Simplify the expressions:
Calculate [tex]\(6^{\frac{1}{3}}\)[/tex] and [tex]\((-2)^{\frac{1}{3}}\)[/tex]:
[tex]\[ 12 (6^{\frac{1}{3}}) - 12 ((-2)^{\frac{1}{3}}) \][/tex]
These calculations result in:
[tex]\[ 12 \cdot 1.81712 - 12 \cdot (-1.25992) \][/tex]
[tex]\[ 12 \cdot 1.81712 + 12 \cdot 1.25992 = 21.8054 + 15.119 = 36.9244 \][/tex]
Hence, the exact value of the integral [tex]\(\int_{-2}^6 \frac{4}{\sqrt[3]{x^2}} \, dx\)[/tex] is:
[tex]\[ \boxed{36.9244997127241} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.