Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve for the distance between the two charges given their electric potential energy, we can use the formula for electric potential energy between two point charges:
[tex]\[ U = k \frac{|q_1 \cdot q_2|}{r} \][/tex]
where:
- [tex]\( U \)[/tex] is the electric potential energy,
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\( 8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \)[/tex]),
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges,
- [tex]\( r \)[/tex] is the distance between the charges.
We need to rearrange the formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r = k \frac{|q_1 \cdot q_2|}{U} \][/tex]
Given:
- [tex]\( q_1 = 4.33 \times 10^{-6} \, \text{C} \)[/tex]
- [tex]\( q_2 = -7.81 \times 10^{-4} \, \text{C} \)[/tex]
- [tex]\( U = 44.9 \, \text{J} \)[/tex]
and
[tex]\[ k = 8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \][/tex]
First, calculate the absolute value of the product of the charges:
[tex]\[ |q_1 \cdot q_2| = |(4.33 \times 10^{-6} \, \text{C}) \cdot (-7.81 \times 10^{-4} \, \text{C})| \][/tex]
[tex]\[ = |4.33 \times 10^{-6} \cdot (-7.81 \times 10^{-4})| \][/tex]
[tex]\[ = |4.33 \cdot -7.81| \times 10^{-10} \][/tex]
[tex]\[ = 33.8073 \times 10^{-10} \][/tex]
[tex]\[ = 3.38073 \times 10^{-9} \, \text{C}^2 \][/tex]
Next, plug this value into the rearranged formula along with the given values for [tex]\( k \)[/tex] and [tex]\( U \)[/tex]:
[tex]\[ r = 8.99 \times 10^9 \frac{\text{N m}^2}{\text{C}^2} \times \frac{3.38073 \times 10^{-9} \, \text{C}^2}{44.9 \, \text{J}} \][/tex]
[tex]\[ = \frac{8.99 \times 10^9 \times 3.38073 \times 10^{-9}}{44.9} \][/tex]
[tex]\[ = \frac{30.4057627}{44.9} \][/tex]
[tex]\[ = 0.6770991692650334 \, \text{m} \][/tex]
Therefore, the distance between the two charges is approximately [tex]\( 0.677 \)[/tex] meters.
[tex]\[ U = k \frac{|q_1 \cdot q_2|}{r} \][/tex]
where:
- [tex]\( U \)[/tex] is the electric potential energy,
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\( 8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \)[/tex]),
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges,
- [tex]\( r \)[/tex] is the distance between the charges.
We need to rearrange the formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r = k \frac{|q_1 \cdot q_2|}{U} \][/tex]
Given:
- [tex]\( q_1 = 4.33 \times 10^{-6} \, \text{C} \)[/tex]
- [tex]\( q_2 = -7.81 \times 10^{-4} \, \text{C} \)[/tex]
- [tex]\( U = 44.9 \, \text{J} \)[/tex]
and
[tex]\[ k = 8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \][/tex]
First, calculate the absolute value of the product of the charges:
[tex]\[ |q_1 \cdot q_2| = |(4.33 \times 10^{-6} \, \text{C}) \cdot (-7.81 \times 10^{-4} \, \text{C})| \][/tex]
[tex]\[ = |4.33 \times 10^{-6} \cdot (-7.81 \times 10^{-4})| \][/tex]
[tex]\[ = |4.33 \cdot -7.81| \times 10^{-10} \][/tex]
[tex]\[ = 33.8073 \times 10^{-10} \][/tex]
[tex]\[ = 3.38073 \times 10^{-9} \, \text{C}^2 \][/tex]
Next, plug this value into the rearranged formula along with the given values for [tex]\( k \)[/tex] and [tex]\( U \)[/tex]:
[tex]\[ r = 8.99 \times 10^9 \frac{\text{N m}^2}{\text{C}^2} \times \frac{3.38073 \times 10^{-9} \, \text{C}^2}{44.9 \, \text{J}} \][/tex]
[tex]\[ = \frac{8.99 \times 10^9 \times 3.38073 \times 10^{-9}}{44.9} \][/tex]
[tex]\[ = \frac{30.4057627}{44.9} \][/tex]
[tex]\[ = 0.6770991692650334 \, \text{m} \][/tex]
Therefore, the distance between the two charges is approximately [tex]\( 0.677 \)[/tex] meters.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.