Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve for the distance between the two charges given their electric potential energy, we can use the formula for electric potential energy between two point charges:
[tex]\[ U = k \frac{|q_1 \cdot q_2|}{r} \][/tex]
where:
- [tex]\( U \)[/tex] is the electric potential energy,
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\( 8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \)[/tex]),
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges,
- [tex]\( r \)[/tex] is the distance between the charges.
We need to rearrange the formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r = k \frac{|q_1 \cdot q_2|}{U} \][/tex]
Given:
- [tex]\( q_1 = 4.33 \times 10^{-6} \, \text{C} \)[/tex]
- [tex]\( q_2 = -7.81 \times 10^{-4} \, \text{C} \)[/tex]
- [tex]\( U = 44.9 \, \text{J} \)[/tex]
and
[tex]\[ k = 8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \][/tex]
First, calculate the absolute value of the product of the charges:
[tex]\[ |q_1 \cdot q_2| = |(4.33 \times 10^{-6} \, \text{C}) \cdot (-7.81 \times 10^{-4} \, \text{C})| \][/tex]
[tex]\[ = |4.33 \times 10^{-6} \cdot (-7.81 \times 10^{-4})| \][/tex]
[tex]\[ = |4.33 \cdot -7.81| \times 10^{-10} \][/tex]
[tex]\[ = 33.8073 \times 10^{-10} \][/tex]
[tex]\[ = 3.38073 \times 10^{-9} \, \text{C}^2 \][/tex]
Next, plug this value into the rearranged formula along with the given values for [tex]\( k \)[/tex] and [tex]\( U \)[/tex]:
[tex]\[ r = 8.99 \times 10^9 \frac{\text{N m}^2}{\text{C}^2} \times \frac{3.38073 \times 10^{-9} \, \text{C}^2}{44.9 \, \text{J}} \][/tex]
[tex]\[ = \frac{8.99 \times 10^9 \times 3.38073 \times 10^{-9}}{44.9} \][/tex]
[tex]\[ = \frac{30.4057627}{44.9} \][/tex]
[tex]\[ = 0.6770991692650334 \, \text{m} \][/tex]
Therefore, the distance between the two charges is approximately [tex]\( 0.677 \)[/tex] meters.
[tex]\[ U = k \frac{|q_1 \cdot q_2|}{r} \][/tex]
where:
- [tex]\( U \)[/tex] is the electric potential energy,
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\( 8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \)[/tex]),
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the charges,
- [tex]\( r \)[/tex] is the distance between the charges.
We need to rearrange the formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r = k \frac{|q_1 \cdot q_2|}{U} \][/tex]
Given:
- [tex]\( q_1 = 4.33 \times 10^{-6} \, \text{C} \)[/tex]
- [tex]\( q_2 = -7.81 \times 10^{-4} \, \text{C} \)[/tex]
- [tex]\( U = 44.9 \, \text{J} \)[/tex]
and
[tex]\[ k = 8.99 \times 10^9 \, \text{N m}^2/\text{C}^2 \][/tex]
First, calculate the absolute value of the product of the charges:
[tex]\[ |q_1 \cdot q_2| = |(4.33 \times 10^{-6} \, \text{C}) \cdot (-7.81 \times 10^{-4} \, \text{C})| \][/tex]
[tex]\[ = |4.33 \times 10^{-6} \cdot (-7.81 \times 10^{-4})| \][/tex]
[tex]\[ = |4.33 \cdot -7.81| \times 10^{-10} \][/tex]
[tex]\[ = 33.8073 \times 10^{-10} \][/tex]
[tex]\[ = 3.38073 \times 10^{-9} \, \text{C}^2 \][/tex]
Next, plug this value into the rearranged formula along with the given values for [tex]\( k \)[/tex] and [tex]\( U \)[/tex]:
[tex]\[ r = 8.99 \times 10^9 \frac{\text{N m}^2}{\text{C}^2} \times \frac{3.38073 \times 10^{-9} \, \text{C}^2}{44.9 \, \text{J}} \][/tex]
[tex]\[ = \frac{8.99 \times 10^9 \times 3.38073 \times 10^{-9}}{44.9} \][/tex]
[tex]\[ = \frac{30.4057627}{44.9} \][/tex]
[tex]\[ = 0.6770991692650334 \, \text{m} \][/tex]
Therefore, the distance between the two charges is approximately [tex]\( 0.677 \)[/tex] meters.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.