Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's break down the problem step by step to better understand the interpretation of the chemical equation given:
### Chemical Equation Interpretation
The chemical equation provided is:
[tex]\[ N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) \][/tex]
### Steps to Interpret
1. Reactants and Products:
- Reactants: These are the substances you start with. In this case, we have Nitrogen gas [tex]\((N_2)\)[/tex] and Hydrogen gas [tex]\((H_2)\)[/tex].
- Products: These are the substances formed as a result of the reaction. In this case, the product is Ammonia gas [tex]\((NH_3)\)[/tex].
2. Mole Ratio:
- The coefficients in the equation tell us the ratio in which the reactants combine and the products form.
- 1 mole of [tex]\(N_2\)[/tex] reacts with 3 moles of [tex]\(H_2\)[/tex] to form 2 moles of [tex]\(NH_3\)[/tex].
### Interpretation Confirmation
According to the equation:
- 1 mole of nitrogen gas ([tex]\(N_2\)[/tex]) reacts with 3 moles of hydrogen gas ([tex]\(H_2\)[/tex]).
- This reaction produces 2 moles of ammonia gas ([tex]\(NH_3\)[/tex]).
### Conclusion
The interpretation stating that 1 mole of [tex]\(N_2\)[/tex] reacts with 3 moles of [tex]\(H_2\)[/tex] to form 2 moles of [tex]\(NH_3\)[/tex] is indeed correct.
Therefore, the statement that the given equation "can be interpreted as follows: 1 mole of [tex]\(N_2\)[/tex] reacts with 3 moles of [tex]\(H_2\)[/tex] to form 2 moles of [tex]\(NH_3\)[/tex]" is true, not false.
### Chemical Equation Interpretation
The chemical equation provided is:
[tex]\[ N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) \][/tex]
### Steps to Interpret
1. Reactants and Products:
- Reactants: These are the substances you start with. In this case, we have Nitrogen gas [tex]\((N_2)\)[/tex] and Hydrogen gas [tex]\((H_2)\)[/tex].
- Products: These are the substances formed as a result of the reaction. In this case, the product is Ammonia gas [tex]\((NH_3)\)[/tex].
2. Mole Ratio:
- The coefficients in the equation tell us the ratio in which the reactants combine and the products form.
- 1 mole of [tex]\(N_2\)[/tex] reacts with 3 moles of [tex]\(H_2\)[/tex] to form 2 moles of [tex]\(NH_3\)[/tex].
### Interpretation Confirmation
According to the equation:
- 1 mole of nitrogen gas ([tex]\(N_2\)[/tex]) reacts with 3 moles of hydrogen gas ([tex]\(H_2\)[/tex]).
- This reaction produces 2 moles of ammonia gas ([tex]\(NH_3\)[/tex]).
### Conclusion
The interpretation stating that 1 mole of [tex]\(N_2\)[/tex] reacts with 3 moles of [tex]\(H_2\)[/tex] to form 2 moles of [tex]\(NH_3\)[/tex] is indeed correct.
Therefore, the statement that the given equation "can be interpreted as follows: 1 mole of [tex]\(N_2\)[/tex] reacts with 3 moles of [tex]\(H_2\)[/tex] to form 2 moles of [tex]\(NH_3\)[/tex]" is true, not false.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.