Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's analyze the chemical reaction and given data step by step:
Balanced Equation:
[tex]\[ P_4(s) + 6H_2(g) \rightarrow 4PH_3(g) \][/tex]
This equation tells us the molar ratios between the reactants and the products:
- 1 mole of [tex]\( P_4 \)[/tex] reacts with 6 moles of [tex]\( H_2 \)[/tex] to produce 4 moles of [tex]\( PH_3 \)[/tex].
Given data:
- [tex]\( 7.0 \)[/tex] moles of [tex]\( H_2 \)[/tex]
- [tex]\( 3.5 \)[/tex] moles of [tex]\( P_4 \)[/tex]
- [tex]\( 14.0 \)[/tex] moles of [tex]\( PH_3 \)[/tex] produced.
Let's answer the specific parts step by step.
### 1. Moles of [tex]\( P_4 \)[/tex] needed:
How much [tex]\( P_4 \)[/tex] is needed to react with [tex]\( 7.0 \)[/tex] moles of [tex]\( H_2 \)[/tex]?
From the balanced equation, [tex]\( 6 \)[/tex] moles of [tex]\( H_2 \)[/tex] react with [tex]\( 1 \)[/tex] mole of [tex]\( P_4 \)[/tex].
[tex]\[ \text{Moles of } P_4 \text{ needed} = \frac{7.0 \, \text{moles of } H_2}{6} = 1.1667 \, \text{moles of } P_4 \][/tex]
So, approximately 1.167 moles of [tex]\( P_4 \)[/tex] are needed to react with 7.0 moles of [tex]\( H_2 \)[/tex].
### 2. Possible Production of [tex]\( PH_3 \)[/tex]:
Given [tex]\( 3.5 \)[/tex] moles of [tex]\( P_4 \)[/tex], how much [tex]\( PH_3 \)[/tex] can be produced?
From the stoichiometry of the balanced equation, [tex]\( 1 \)[/tex] mole of [tex]\( P_4 \)[/tex] produces [tex]\( 4 \)[/tex] moles of [tex]\( PH_3 \)[/tex].
[tex]\[ \text{Moles of } PH_3 \text{ produced} = 3.5 \times 4 = 14.0 \, \text{moles of } PH_3 \][/tex]
Thus, [tex]\( 14.0 \)[/tex] moles of [tex]\( PH_3 \)[/tex] can be produced with the given [tex]\( 3.5 \)[/tex] moles of [tex]\( P_4 \)[/tex].
### 3. Possible Reaction with [tex]\( P_4 \)[/tex]:
Using the [tex]\( 7.0 \)[/tex] moles of [tex]\( H_2 \)[/tex], how much [tex]\( P_4 \)[/tex] could react?
From the balanced equation and the molar ratio:
[tex]\[ \text{Moles of } P_4 \text{ that could react} = \frac{7.0 \, \text{moles of } H_2}{\frac{1}{6}} = 7.0 \times 6 = 42.0 \, \text{moles of } P_4 \][/tex]
Thus, [tex]\( 7.0 \)[/tex] moles of [tex]\( H_2 \)[/tex] could potentially react with [tex]\( 42.0 \)[/tex] moles of [tex]\( P_4 \)[/tex].
### Summary:
- 1.167 moles of [tex]\( P_4 \)[/tex] are needed to react with [tex]\( 7.0 \)[/tex] moles of [tex]\( H_2 \)[/tex].
- [tex]\( 14.0 \)[/tex] moles of [tex]\( PH_3 \)[/tex] can be produced with the given [tex]\( 3.5 \)[/tex] moles of [tex]\( P_4 \)[/tex].
- [tex]\( 7.0 \)[/tex] moles of [tex]\( H_2 \)[/tex] could potentially react with [tex]\( 42.0 \)[/tex] moles of [tex]\( P_4 \)[/tex].
Balanced Equation:
[tex]\[ P_4(s) + 6H_2(g) \rightarrow 4PH_3(g) \][/tex]
This equation tells us the molar ratios between the reactants and the products:
- 1 mole of [tex]\( P_4 \)[/tex] reacts with 6 moles of [tex]\( H_2 \)[/tex] to produce 4 moles of [tex]\( PH_3 \)[/tex].
Given data:
- [tex]\( 7.0 \)[/tex] moles of [tex]\( H_2 \)[/tex]
- [tex]\( 3.5 \)[/tex] moles of [tex]\( P_4 \)[/tex]
- [tex]\( 14.0 \)[/tex] moles of [tex]\( PH_3 \)[/tex] produced.
Let's answer the specific parts step by step.
### 1. Moles of [tex]\( P_4 \)[/tex] needed:
How much [tex]\( P_4 \)[/tex] is needed to react with [tex]\( 7.0 \)[/tex] moles of [tex]\( H_2 \)[/tex]?
From the balanced equation, [tex]\( 6 \)[/tex] moles of [tex]\( H_2 \)[/tex] react with [tex]\( 1 \)[/tex] mole of [tex]\( P_4 \)[/tex].
[tex]\[ \text{Moles of } P_4 \text{ needed} = \frac{7.0 \, \text{moles of } H_2}{6} = 1.1667 \, \text{moles of } P_4 \][/tex]
So, approximately 1.167 moles of [tex]\( P_4 \)[/tex] are needed to react with 7.0 moles of [tex]\( H_2 \)[/tex].
### 2. Possible Production of [tex]\( PH_3 \)[/tex]:
Given [tex]\( 3.5 \)[/tex] moles of [tex]\( P_4 \)[/tex], how much [tex]\( PH_3 \)[/tex] can be produced?
From the stoichiometry of the balanced equation, [tex]\( 1 \)[/tex] mole of [tex]\( P_4 \)[/tex] produces [tex]\( 4 \)[/tex] moles of [tex]\( PH_3 \)[/tex].
[tex]\[ \text{Moles of } PH_3 \text{ produced} = 3.5 \times 4 = 14.0 \, \text{moles of } PH_3 \][/tex]
Thus, [tex]\( 14.0 \)[/tex] moles of [tex]\( PH_3 \)[/tex] can be produced with the given [tex]\( 3.5 \)[/tex] moles of [tex]\( P_4 \)[/tex].
### 3. Possible Reaction with [tex]\( P_4 \)[/tex]:
Using the [tex]\( 7.0 \)[/tex] moles of [tex]\( H_2 \)[/tex], how much [tex]\( P_4 \)[/tex] could react?
From the balanced equation and the molar ratio:
[tex]\[ \text{Moles of } P_4 \text{ that could react} = \frac{7.0 \, \text{moles of } H_2}{\frac{1}{6}} = 7.0 \times 6 = 42.0 \, \text{moles of } P_4 \][/tex]
Thus, [tex]\( 7.0 \)[/tex] moles of [tex]\( H_2 \)[/tex] could potentially react with [tex]\( 42.0 \)[/tex] moles of [tex]\( P_4 \)[/tex].
### Summary:
- 1.167 moles of [tex]\( P_4 \)[/tex] are needed to react with [tex]\( 7.0 \)[/tex] moles of [tex]\( H_2 \)[/tex].
- [tex]\( 14.0 \)[/tex] moles of [tex]\( PH_3 \)[/tex] can be produced with the given [tex]\( 3.5 \)[/tex] moles of [tex]\( P_4 \)[/tex].
- [tex]\( 7.0 \)[/tex] moles of [tex]\( H_2 \)[/tex] could potentially react with [tex]\( 42.0 \)[/tex] moles of [tex]\( P_4 \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.