Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's delve into finding the missing expression in step 7 using clear math steps.
Given:
[tex]\[ BA = \sqrt{1 + d^2} \][/tex]
[tex]\[ BC = \sqrt{e^2 + 1} \][/tex]
We're applying the distance formula:
[tex]\[ CA = \sqrt{(d - e)^2} = d - e \][/tex]
(Note: There seems to be a typo here, as [tex]\(\sqrt{(d - e)^2}\)[/tex] simplifies to [tex]\(|d - e|\)[/tex]. However, this can be overlooked since the primary focus is on the provided expressions.)
We need to simplify:
[tex]\[ \left(\sqrt{1 + d^2}\right)^2 + \left(\sqrt{e^2 + 1}\right)^2 \][/tex]
Step-by-step:
1. Square both expressions:
[tex]\[ (\sqrt{1 + d^2})^2 = 1 + d^2 \][/tex]
[tex]\[ (\sqrt{e^2 + 1})^2 = e^2 + 1 \][/tex]
2. Add the squared results:
[tex]\[ (1 + d^2) + (e^2 + 1) \][/tex]
This simplifies to:
[tex]\[ 1 + d^2 + e^2 + 1 = d^2 + e^2 + 2 \][/tex]
Looking at the subsequent lines:
[tex]\[ 2 + d^2 + e^2 = d^2 - 2de + e^2 \][/tex]
Let's simplify the right-hand side of the equation using a known algebraic identity. Notice:
[tex]\[ d^2 - 2de + e^2 \][/tex]
This represents the expansion of:
[tex]\[ (d - e)^2 \][/tex]
So, comparing the left-hand side and right-hand side of the equation:
[tex]\[ d^2 + e^2 + 2 \text{ (From: } (\sqrt{1+d^2})^2+(\sqrt{e^2+1})^2) = d^2 - 2 d e + e^2 \][/tex]
To find the missing term that equates both sides, we examine:
[tex]\[ 2 = -2de \][/tex]
Thus,
[tex]\[ \boxed{-2 d e} \][/tex]
Therefore, the missing expression in step 7 is:
A. [tex]\(-2 d e\)[/tex]
This ensures the equation balance, verifying that option A is the correct missing expression.
Given:
[tex]\[ BA = \sqrt{1 + d^2} \][/tex]
[tex]\[ BC = \sqrt{e^2 + 1} \][/tex]
We're applying the distance formula:
[tex]\[ CA = \sqrt{(d - e)^2} = d - e \][/tex]
(Note: There seems to be a typo here, as [tex]\(\sqrt{(d - e)^2}\)[/tex] simplifies to [tex]\(|d - e|\)[/tex]. However, this can be overlooked since the primary focus is on the provided expressions.)
We need to simplify:
[tex]\[ \left(\sqrt{1 + d^2}\right)^2 + \left(\sqrt{e^2 + 1}\right)^2 \][/tex]
Step-by-step:
1. Square both expressions:
[tex]\[ (\sqrt{1 + d^2})^2 = 1 + d^2 \][/tex]
[tex]\[ (\sqrt{e^2 + 1})^2 = e^2 + 1 \][/tex]
2. Add the squared results:
[tex]\[ (1 + d^2) + (e^2 + 1) \][/tex]
This simplifies to:
[tex]\[ 1 + d^2 + e^2 + 1 = d^2 + e^2 + 2 \][/tex]
Looking at the subsequent lines:
[tex]\[ 2 + d^2 + e^2 = d^2 - 2de + e^2 \][/tex]
Let's simplify the right-hand side of the equation using a known algebraic identity. Notice:
[tex]\[ d^2 - 2de + e^2 \][/tex]
This represents the expansion of:
[tex]\[ (d - e)^2 \][/tex]
So, comparing the left-hand side and right-hand side of the equation:
[tex]\[ d^2 + e^2 + 2 \text{ (From: } (\sqrt{1+d^2})^2+(\sqrt{e^2+1})^2) = d^2 - 2 d e + e^2 \][/tex]
To find the missing term that equates both sides, we examine:
[tex]\[ 2 = -2de \][/tex]
Thus,
[tex]\[ \boxed{-2 d e} \][/tex]
Therefore, the missing expression in step 7 is:
A. [tex]\(-2 d e\)[/tex]
This ensures the equation balance, verifying that option A is the correct missing expression.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.