Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Absolutely! Let's solve the problem step-by-step.
Given the decomposition reaction of potassium chlorate ([tex]\(KClO_3\)[/tex]):
[tex]\[ 2 KClO_3(s) \rightarrow 2 KCl(s) + 3 O_2(g) \][/tex]
To find out how many moles of [tex]\(O_2\)[/tex] are formed from a 3.8-mol sample of [tex]\(KClO_3\)[/tex], we need to analyze the molar relationship from the balanced chemical equation.
1. Identify the molar ratio: According to the balanced chemical equation, 2 moles of [tex]\(KClO_3\)[/tex] decompose to produce 3 moles of [tex]\(O_2\)[/tex].
[tex]\[ 2 \text{ moles } KClO_3 \rightarrow 3 \text{ moles } O_2 \][/tex]
2. Calculate the molar ratio: For 1 mole of [tex]\(KClO_3\)[/tex]:
[tex]\[ \text{Moles of } O_2 = 1 \times \frac{3}{2} = 1.5 \text{ moles of } O_2 \][/tex]
3. Apply the molar ratio to the given sample: Now, we need to determine how many moles of [tex]\(O_2\)[/tex] are produced from a 3.8-mol sample of [tex]\(KClO_3\)[/tex]:
[tex]\[ \text{Moles of } O_2 = 3.8 \text{ moles of } KClO_3 \times \frac{3}{2} = 3.8 \times 1.5 \][/tex]
4. Perform the multiplication:
[tex]\[ 3.8 \times 1.5 = 5.7 \text{ moles of } O_2 \][/tex]
Hence, the number of moles of [tex]\(O_2\)[/tex] formed from a 3.8-mol sample of [tex]\(KClO_3\)[/tex] is [tex]\(5.7\)[/tex] moles.
Therefore, the correct answer is:
[tex]\[ \boxed{5.7 \text{ mol}} \][/tex]
Given the decomposition reaction of potassium chlorate ([tex]\(KClO_3\)[/tex]):
[tex]\[ 2 KClO_3(s) \rightarrow 2 KCl(s) + 3 O_2(g) \][/tex]
To find out how many moles of [tex]\(O_2\)[/tex] are formed from a 3.8-mol sample of [tex]\(KClO_3\)[/tex], we need to analyze the molar relationship from the balanced chemical equation.
1. Identify the molar ratio: According to the balanced chemical equation, 2 moles of [tex]\(KClO_3\)[/tex] decompose to produce 3 moles of [tex]\(O_2\)[/tex].
[tex]\[ 2 \text{ moles } KClO_3 \rightarrow 3 \text{ moles } O_2 \][/tex]
2. Calculate the molar ratio: For 1 mole of [tex]\(KClO_3\)[/tex]:
[tex]\[ \text{Moles of } O_2 = 1 \times \frac{3}{2} = 1.5 \text{ moles of } O_2 \][/tex]
3. Apply the molar ratio to the given sample: Now, we need to determine how many moles of [tex]\(O_2\)[/tex] are produced from a 3.8-mol sample of [tex]\(KClO_3\)[/tex]:
[tex]\[ \text{Moles of } O_2 = 3.8 \text{ moles of } KClO_3 \times \frac{3}{2} = 3.8 \times 1.5 \][/tex]
4. Perform the multiplication:
[tex]\[ 3.8 \times 1.5 = 5.7 \text{ moles of } O_2 \][/tex]
Hence, the number of moles of [tex]\(O_2\)[/tex] formed from a 3.8-mol sample of [tex]\(KClO_3\)[/tex] is [tex]\(5.7\)[/tex] moles.
Therefore, the correct answer is:
[tex]\[ \boxed{5.7 \text{ mol}} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.