At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Absolutely! Let's solve the problem step-by-step.
Given the decomposition reaction of potassium chlorate ([tex]\(KClO_3\)[/tex]):
[tex]\[ 2 KClO_3(s) \rightarrow 2 KCl(s) + 3 O_2(g) \][/tex]
To find out how many moles of [tex]\(O_2\)[/tex] are formed from a 3.8-mol sample of [tex]\(KClO_3\)[/tex], we need to analyze the molar relationship from the balanced chemical equation.
1. Identify the molar ratio: According to the balanced chemical equation, 2 moles of [tex]\(KClO_3\)[/tex] decompose to produce 3 moles of [tex]\(O_2\)[/tex].
[tex]\[ 2 \text{ moles } KClO_3 \rightarrow 3 \text{ moles } O_2 \][/tex]
2. Calculate the molar ratio: For 1 mole of [tex]\(KClO_3\)[/tex]:
[tex]\[ \text{Moles of } O_2 = 1 \times \frac{3}{2} = 1.5 \text{ moles of } O_2 \][/tex]
3. Apply the molar ratio to the given sample: Now, we need to determine how many moles of [tex]\(O_2\)[/tex] are produced from a 3.8-mol sample of [tex]\(KClO_3\)[/tex]:
[tex]\[ \text{Moles of } O_2 = 3.8 \text{ moles of } KClO_3 \times \frac{3}{2} = 3.8 \times 1.5 \][/tex]
4. Perform the multiplication:
[tex]\[ 3.8 \times 1.5 = 5.7 \text{ moles of } O_2 \][/tex]
Hence, the number of moles of [tex]\(O_2\)[/tex] formed from a 3.8-mol sample of [tex]\(KClO_3\)[/tex] is [tex]\(5.7\)[/tex] moles.
Therefore, the correct answer is:
[tex]\[ \boxed{5.7 \text{ mol}} \][/tex]
Given the decomposition reaction of potassium chlorate ([tex]\(KClO_3\)[/tex]):
[tex]\[ 2 KClO_3(s) \rightarrow 2 KCl(s) + 3 O_2(g) \][/tex]
To find out how many moles of [tex]\(O_2\)[/tex] are formed from a 3.8-mol sample of [tex]\(KClO_3\)[/tex], we need to analyze the molar relationship from the balanced chemical equation.
1. Identify the molar ratio: According to the balanced chemical equation, 2 moles of [tex]\(KClO_3\)[/tex] decompose to produce 3 moles of [tex]\(O_2\)[/tex].
[tex]\[ 2 \text{ moles } KClO_3 \rightarrow 3 \text{ moles } O_2 \][/tex]
2. Calculate the molar ratio: For 1 mole of [tex]\(KClO_3\)[/tex]:
[tex]\[ \text{Moles of } O_2 = 1 \times \frac{3}{2} = 1.5 \text{ moles of } O_2 \][/tex]
3. Apply the molar ratio to the given sample: Now, we need to determine how many moles of [tex]\(O_2\)[/tex] are produced from a 3.8-mol sample of [tex]\(KClO_3\)[/tex]:
[tex]\[ \text{Moles of } O_2 = 3.8 \text{ moles of } KClO_3 \times \frac{3}{2} = 3.8 \times 1.5 \][/tex]
4. Perform the multiplication:
[tex]\[ 3.8 \times 1.5 = 5.7 \text{ moles of } O_2 \][/tex]
Hence, the number of moles of [tex]\(O_2\)[/tex] formed from a 3.8-mol sample of [tex]\(KClO_3\)[/tex] is [tex]\(5.7\)[/tex] moles.
Therefore, the correct answer is:
[tex]\[ \boxed{5.7 \text{ mol}} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.