Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the value of [tex]\( y \)[/tex] for the point [tex]\((6, y)\)[/tex] that lies on the same line as the point [tex]\((10, -1)\)[/tex] with a given slope of [tex]\(\frac{1}{4}\)[/tex]:
1. Identify the coordinates and slope:
- First point: [tex]\((10, -1)\)[/tex]
- Second point: [tex]\((6, y)\)[/tex]
- Slope, [tex]\( m = \frac{1}{4} \)[/tex]
2. Use the slope formula:
The slope [tex]\(m\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
3. Substitute the known values:
Here, [tex]\( (x_1, y_1) = (10, -1) \)[/tex] and [tex]\( (x_2, y_2) = (6, y) \)[/tex]. Substituting these values into the slope formula, we get:
[tex]\[ \frac{1}{4} = \frac{y - (-1)}{6 - 10} \][/tex]
4. Simplify the denominator:
Since [tex]\( 6 - 10 = -4 \)[/tex], the equation becomes:
[tex]\[ \frac{1}{4} = \frac{y + 1}{-4} \][/tex]
5. Cross-multiply to solve for [tex]\( y \)[/tex]:
Cross-multiplying the terms gives:
[tex]\[ 1 \cdot (-4) = 4 \cdot (y + 1) \][/tex]
Simplifying this, we get:
[tex]\[ -4 = 4(y + 1) \][/tex]
6. Solve for [tex]\( y \)[/tex]:
Divide both sides by 4:
[tex]\[ -1 = y + 1 \][/tex]
Subtract 1 from both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = -2 \][/tex]
So, the value of [tex]\( y \)[/tex] is:
[tex]\[ -2 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{-2} \][/tex]
1. Identify the coordinates and slope:
- First point: [tex]\((10, -1)\)[/tex]
- Second point: [tex]\((6, y)\)[/tex]
- Slope, [tex]\( m = \frac{1}{4} \)[/tex]
2. Use the slope formula:
The slope [tex]\(m\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
3. Substitute the known values:
Here, [tex]\( (x_1, y_1) = (10, -1) \)[/tex] and [tex]\( (x_2, y_2) = (6, y) \)[/tex]. Substituting these values into the slope formula, we get:
[tex]\[ \frac{1}{4} = \frac{y - (-1)}{6 - 10} \][/tex]
4. Simplify the denominator:
Since [tex]\( 6 - 10 = -4 \)[/tex], the equation becomes:
[tex]\[ \frac{1}{4} = \frac{y + 1}{-4} \][/tex]
5. Cross-multiply to solve for [tex]\( y \)[/tex]:
Cross-multiplying the terms gives:
[tex]\[ 1 \cdot (-4) = 4 \cdot (y + 1) \][/tex]
Simplifying this, we get:
[tex]\[ -4 = 4(y + 1) \][/tex]
6. Solve for [tex]\( y \)[/tex]:
Divide both sides by 4:
[tex]\[ -1 = y + 1 \][/tex]
Subtract 1 from both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = -2 \][/tex]
So, the value of [tex]\( y \)[/tex] is:
[tex]\[ -2 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{-2} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.