Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's fill in the blanks step-by-step so that the resulting statement is true.
1. [tex]\( a \)[/tex] is defined as [tex]\( \sqrt{20} \)[/tex].
2. [tex]\( b \)[/tex] is defined as [tex]\( \sqrt{6} \)[/tex].
The given expression is [tex]\( (\sqrt{20} + \sqrt{6})(\sqrt{20} - \sqrt{6}) \)[/tex].
We will use the difference of squares formula: [tex]\( (a + b)(a - b) = a^2 - b^2 \)[/tex].
Let's break this down:
- For [tex]\( a \)[/tex]:
[tex]\( a^2 = (\sqrt{20})^2 \)[/tex].
The square of [tex]\( \sqrt{20} \)[/tex] is [tex]\( 20 \)[/tex].
- For [tex]\( b \)[/tex]:
[tex]\( b^2 = (\sqrt{6})^2 \)[/tex].
The square of [tex]\( \sqrt{6} \)[/tex] is [tex]\( 6 \)[/tex].
Thus,
[tex]\[ a^2 = 20 \][/tex]
and
[tex]\[ b^2 = 6 \][/tex]
Now, substituting these into the difference of squares formula:
[tex]\[ (\sqrt{20}+\sqrt{6})(\sqrt{20}-\sqrt{6}) = a^2 - b^2 \][/tex]
[tex]\[ = 20 - 6 \][/tex]
[tex]\[ = 14 \][/tex]
Therefore, the filled-in statement is:
[tex]\[ (\sqrt{20}+\sqrt{6})(\sqrt{20}-\sqrt{6})=\left(20^2-(6)^2=20-6=14\right) \][/tex]
1. [tex]\( a \)[/tex] is defined as [tex]\( \sqrt{20} \)[/tex].
2. [tex]\( b \)[/tex] is defined as [tex]\( \sqrt{6} \)[/tex].
The given expression is [tex]\( (\sqrt{20} + \sqrt{6})(\sqrt{20} - \sqrt{6}) \)[/tex].
We will use the difference of squares formula: [tex]\( (a + b)(a - b) = a^2 - b^2 \)[/tex].
Let's break this down:
- For [tex]\( a \)[/tex]:
[tex]\( a^2 = (\sqrt{20})^2 \)[/tex].
The square of [tex]\( \sqrt{20} \)[/tex] is [tex]\( 20 \)[/tex].
- For [tex]\( b \)[/tex]:
[tex]\( b^2 = (\sqrt{6})^2 \)[/tex].
The square of [tex]\( \sqrt{6} \)[/tex] is [tex]\( 6 \)[/tex].
Thus,
[tex]\[ a^2 = 20 \][/tex]
and
[tex]\[ b^2 = 6 \][/tex]
Now, substituting these into the difference of squares formula:
[tex]\[ (\sqrt{20}+\sqrt{6})(\sqrt{20}-\sqrt{6}) = a^2 - b^2 \][/tex]
[tex]\[ = 20 - 6 \][/tex]
[tex]\[ = 14 \][/tex]
Therefore, the filled-in statement is:
[tex]\[ (\sqrt{20}+\sqrt{6})(\sqrt{20}-\sqrt{6})=\left(20^2-(6)^2=20-6=14\right) \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.