Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's analyse the arithmetic sequence given: 25, 31, 37, 43, 49...
To find the formula for an arithmetic sequence, we use the general form:
[tex]\[ f(n) = a + (n - 1) \cdot d \][/tex]
where [tex]\(a\)[/tex] is the first term of the sequence, [tex]\(d\)[/tex] is the common difference, and [tex]\(n\)[/tex] is the term number.
Step 1: Identify the first term and the common difference
From the given sequence:
- The first term [tex]\(a\)[/tex] is [tex]\(25\)[/tex].
- The common difference [tex]\(d\)[/tex] is calculated by subtracting the first term from the second term:
[tex]\[ d = 31 - 25 = 6 \][/tex]
Step 2: Write the general formula
Substituting [tex]\(a = 25\)[/tex] and [tex]\(d = 6\)[/tex] into the general formula, we get:
[tex]\[ f(n) = 25 + (n - 1) \cdot 6 \][/tex]
Step 3: Simplify the formula
Let's distribute and simplify the equation:
[tex]\[ f(n) = 25 + 6(n - 1) \][/tex]
[tex]\[ f(n) = 25 + 6n - 6 \][/tex]
[tex]\[ f(n) = 6n + 19 \][/tex]
Thus, the formula for the sequence based on our calculations simplifies to:
[tex]\[ f(n) = 6n + 19 \][/tex]
When we compare this formula to the options given:
1. [tex]\( f(n) = 25 + 6n \)[/tex]
2. [tex]\( f(n) = 25 + 6(n+1) \)[/tex]
3. [tex]\( f(n) = 25 + 6(n-1) \)[/tex]
4. [tex]\( f(n) = 19 + 6(n+1) \)[/tex]
We observe that the closest match, after simplifying, to our formula [tex]\( f(n) = 6n + 19 \)[/tex] aligns with:
[tex]\[ f(n) = 19 + 6(n+1) \][/tex]
Therefore, the correct option is:
Option 4: [tex]\( f(n) = 19 + 6(n+1) \)[/tex]
To find the formula for an arithmetic sequence, we use the general form:
[tex]\[ f(n) = a + (n - 1) \cdot d \][/tex]
where [tex]\(a\)[/tex] is the first term of the sequence, [tex]\(d\)[/tex] is the common difference, and [tex]\(n\)[/tex] is the term number.
Step 1: Identify the first term and the common difference
From the given sequence:
- The first term [tex]\(a\)[/tex] is [tex]\(25\)[/tex].
- The common difference [tex]\(d\)[/tex] is calculated by subtracting the first term from the second term:
[tex]\[ d = 31 - 25 = 6 \][/tex]
Step 2: Write the general formula
Substituting [tex]\(a = 25\)[/tex] and [tex]\(d = 6\)[/tex] into the general formula, we get:
[tex]\[ f(n) = 25 + (n - 1) \cdot 6 \][/tex]
Step 3: Simplify the formula
Let's distribute and simplify the equation:
[tex]\[ f(n) = 25 + 6(n - 1) \][/tex]
[tex]\[ f(n) = 25 + 6n - 6 \][/tex]
[tex]\[ f(n) = 6n + 19 \][/tex]
Thus, the formula for the sequence based on our calculations simplifies to:
[tex]\[ f(n) = 6n + 19 \][/tex]
When we compare this formula to the options given:
1. [tex]\( f(n) = 25 + 6n \)[/tex]
2. [tex]\( f(n) = 25 + 6(n+1) \)[/tex]
3. [tex]\( f(n) = 25 + 6(n-1) \)[/tex]
4. [tex]\( f(n) = 19 + 6(n+1) \)[/tex]
We observe that the closest match, after simplifying, to our formula [tex]\( f(n) = 6n + 19 \)[/tex] aligns with:
[tex]\[ f(n) = 19 + 6(n+1) \][/tex]
Therefore, the correct option is:
Option 4: [tex]\( f(n) = 19 + 6(n+1) \)[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.