Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which of the given functions are quadratic functions, we should first understand the definition of a quadratic function. A quadratic function is a polynomial function of degree 2, which means the highest power of [tex]\( x \)[/tex] in the function is [tex]\( x^2 \)[/tex] and there are no terms with a higher power than [tex]\( x^2 \)[/tex].
Let's analyze each of the given functions:
a. [tex]\( f(x) = x^2 - x \)[/tex]
- The highest power of [tex]\( x \)[/tex] in this function is [tex]\( x^2 \)[/tex].
- There are no terms with a higher power than [tex]\( x^2 \)[/tex].
- Therefore, this is a quadratic function.
b. [tex]\( f(x) = x + 2 \)[/tex]
- The highest power of [tex]\( x \)[/tex] in this function is [tex]\( x \)[/tex].
- There is no [tex]\( x^2 \)[/tex] term.
- Therefore, this is not a quadratic function.
c. [tex]\( f(x) = 2x^2 - 9x + 3 \)[/tex]
- The highest power of [tex]\( x \)[/tex] in this function is [tex]\( x^2 \)[/tex].
- There are no terms with a higher power than [tex]\( x^2 \)[/tex].
- Therefore, this is a quadratic function.
d. [tex]\( f(x) = x^3 - 2x^2 + x \)[/tex]
- The highest power of [tex]\( x \)[/tex] in this function is [tex]\( x^3 \)[/tex].
- Since the highest power is [tex]\( x^3 \)[/tex], this is not a quadratic function.
Thus, the functions that are quadratic are:
- Function a: [tex]\( f(x) = x^2 - x \)[/tex]
- Function c: [tex]\( f(x) = 2x^2 - 9x + 3 \)[/tex]
Therefore, the correct answers are:
- a. [tex]\( f(x) = x^2 - x \)[/tex]
- c. [tex]\( f(x) = 2x^2 - 9x + 3 \)[/tex]
The indices of the quadratic functions are:
[tex]\[ \boxed{[1, 3]} \][/tex]
Let's analyze each of the given functions:
a. [tex]\( f(x) = x^2 - x \)[/tex]
- The highest power of [tex]\( x \)[/tex] in this function is [tex]\( x^2 \)[/tex].
- There are no terms with a higher power than [tex]\( x^2 \)[/tex].
- Therefore, this is a quadratic function.
b. [tex]\( f(x) = x + 2 \)[/tex]
- The highest power of [tex]\( x \)[/tex] in this function is [tex]\( x \)[/tex].
- There is no [tex]\( x^2 \)[/tex] term.
- Therefore, this is not a quadratic function.
c. [tex]\( f(x) = 2x^2 - 9x + 3 \)[/tex]
- The highest power of [tex]\( x \)[/tex] in this function is [tex]\( x^2 \)[/tex].
- There are no terms with a higher power than [tex]\( x^2 \)[/tex].
- Therefore, this is a quadratic function.
d. [tex]\( f(x) = x^3 - 2x^2 + x \)[/tex]
- The highest power of [tex]\( x \)[/tex] in this function is [tex]\( x^3 \)[/tex].
- Since the highest power is [tex]\( x^3 \)[/tex], this is not a quadratic function.
Thus, the functions that are quadratic are:
- Function a: [tex]\( f(x) = x^2 - x \)[/tex]
- Function c: [tex]\( f(x) = 2x^2 - 9x + 3 \)[/tex]
Therefore, the correct answers are:
- a. [tex]\( f(x) = x^2 - x \)[/tex]
- c. [tex]\( f(x) = 2x^2 - 9x + 3 \)[/tex]
The indices of the quadratic functions are:
[tex]\[ \boxed{[1, 3]} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.