Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the amount of money in the compound interest savings account after 15 years, we will follow these steps:
1. Identify the given variables:
- Initial investment ([tex]\(P\)[/tex]) = [tex]$3000 - Annual interest rate (\(r\)) = 5.4% (or 0.054 in decimal form) - Compounding frequency (\(n\)) = 2 (since it is compounded semiannually) - Number of years (\(t\)) = 15 2. Substitute these values into the compound interest formula: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] 3. Plug in the given values: \[ A = 3000 \left(1 + \frac{0.054}{2}\right)^{2 \times 15} \] 4. Calculate the periodic interest rate: \[ \frac{0.054}{2} = 0.027 \] 5. Calculate the exponent: \[ 2 \times 15 = 30 \] 6. Substitute these into the formula: \[ A = 3000 \left(1 + 0.027\right)^{30} \] 7. Calculate inside the parenthesis: \[ 1 + 0.027 = 1.027 \] 8. Raise 1.027 to the 30th power: \[ 1.027^{30} \] 9. Multiply this result by 3000: \[ 3000 \times \left(1.027^{30}\right) \] 10. The calculated amount \(A\) after 15 years, rounded to the nearest hundredths place, is: \[ \boxed{6671.67} \] Therefore, the amount in the account after 15 years is \( \$[/tex] 6,671.67 \). The correct answer is:
[tex]\[ \boxed{\$ 6,671.67} \][/tex]
1. Identify the given variables:
- Initial investment ([tex]\(P\)[/tex]) = [tex]$3000 - Annual interest rate (\(r\)) = 5.4% (or 0.054 in decimal form) - Compounding frequency (\(n\)) = 2 (since it is compounded semiannually) - Number of years (\(t\)) = 15 2. Substitute these values into the compound interest formula: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] 3. Plug in the given values: \[ A = 3000 \left(1 + \frac{0.054}{2}\right)^{2 \times 15} \] 4. Calculate the periodic interest rate: \[ \frac{0.054}{2} = 0.027 \] 5. Calculate the exponent: \[ 2 \times 15 = 30 \] 6. Substitute these into the formula: \[ A = 3000 \left(1 + 0.027\right)^{30} \] 7. Calculate inside the parenthesis: \[ 1 + 0.027 = 1.027 \] 8. Raise 1.027 to the 30th power: \[ 1.027^{30} \] 9. Multiply this result by 3000: \[ 3000 \times \left(1.027^{30}\right) \] 10. The calculated amount \(A\) after 15 years, rounded to the nearest hundredths place, is: \[ \boxed{6671.67} \] Therefore, the amount in the account after 15 years is \( \$[/tex] 6,671.67 \). The correct answer is:
[tex]\[ \boxed{\$ 6,671.67} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.