Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's go through a step-by-step solution to subtract the fractions:
1. Identify and Factor the Denominators:
- The first fraction's denominator is [tex]\( x^2 - 36 \)[/tex].
This can be factored as a difference of squares:
[tex]\[ x^2 - 36 = (x - 6)(x + 6) \][/tex]
- The second fraction's denominator is [tex]\( x^2 + 12x + 36 \)[/tex].
This can be factored as a perfect square trinomial:
[tex]\[ x^2 + 12x + 36 = (x + 6)^2 \][/tex]
So, our fractions now look like:
[tex]\[ \frac{4}{(x - 6)(x + 6)} - \frac{2}{(x + 6)^2} \][/tex]
2. Find a Common Denominator:
- The common denominator for these fractions will be the Least Common Denominator (LCD):
[tex]\[ LCD = (x - 6)(x + 6)^2 \][/tex]
3. Rewrite Each Fraction with the Common Denominator:
- Rewrite the first fraction [tex]\(\frac{4}{(x - 6)(x + 6)}\)[/tex] with the common denominator:
Multiply the numerator and denominator by [tex]\((x + 6)\)[/tex] to get:
[tex]\[ \frac{4(x + 6)}{(x - 6)(x + 6)^2} \][/tex]
- The second fraction [tex]\(\frac{2}{(x + 6)^2}\)[/tex] already needs the denominator [tex]\((x - 6)(x + 6)^2\)[/tex]:
Multiply the numerator and denominator by [tex]\((x - 6)\)[/tex] to get:
[tex]\[ \frac{2(x - 6)}{(x - 6)(x + 6)^2} \][/tex]
4. Subtract the Fractions:
- Now that both fractions have the same denominator, we can subtract the numerators:
[tex]\[ \frac{4(x + 6) - 2(x - 6)}{(x - 6)(x + 6)^2} \][/tex]
- Simplify the numerator:
[tex]\[ 4(x + 6) = 4x + 24 \][/tex]
[tex]\[ 2(x - 6) = 2x - 12 \][/tex]
[tex]\[ 4x + 24 - (2x - 12) = 4x + 24 - 2x + 12 = 2x + 36 \][/tex]
So, the fraction now looks like:
[tex]\[ \frac{2x + 36}{(x - 6)(x + 6)^2} \][/tex]
5. Factor the Numerator and Simplify:
- The numerator [tex]\(2x + 36\)[/tex] can be factored as:
[tex]\[ 2(x + 18) \][/tex]
- This gives us:
[tex]\[ \frac{2(x + 18)}{(x - 6)(x + 6)^2} \][/tex]
- Simplify as far as possible.
Therefore, the simplified form of the given subtraction problem is:
[tex]\[ \frac{2(x + 18)}{(x - 6)(x + 6)^2} \][/tex]
This is the final simplified expression.
1. Identify and Factor the Denominators:
- The first fraction's denominator is [tex]\( x^2 - 36 \)[/tex].
This can be factored as a difference of squares:
[tex]\[ x^2 - 36 = (x - 6)(x + 6) \][/tex]
- The second fraction's denominator is [tex]\( x^2 + 12x + 36 \)[/tex].
This can be factored as a perfect square trinomial:
[tex]\[ x^2 + 12x + 36 = (x + 6)^2 \][/tex]
So, our fractions now look like:
[tex]\[ \frac{4}{(x - 6)(x + 6)} - \frac{2}{(x + 6)^2} \][/tex]
2. Find a Common Denominator:
- The common denominator for these fractions will be the Least Common Denominator (LCD):
[tex]\[ LCD = (x - 6)(x + 6)^2 \][/tex]
3. Rewrite Each Fraction with the Common Denominator:
- Rewrite the first fraction [tex]\(\frac{4}{(x - 6)(x + 6)}\)[/tex] with the common denominator:
Multiply the numerator and denominator by [tex]\((x + 6)\)[/tex] to get:
[tex]\[ \frac{4(x + 6)}{(x - 6)(x + 6)^2} \][/tex]
- The second fraction [tex]\(\frac{2}{(x + 6)^2}\)[/tex] already needs the denominator [tex]\((x - 6)(x + 6)^2\)[/tex]:
Multiply the numerator and denominator by [tex]\((x - 6)\)[/tex] to get:
[tex]\[ \frac{2(x - 6)}{(x - 6)(x + 6)^2} \][/tex]
4. Subtract the Fractions:
- Now that both fractions have the same denominator, we can subtract the numerators:
[tex]\[ \frac{4(x + 6) - 2(x - 6)}{(x - 6)(x + 6)^2} \][/tex]
- Simplify the numerator:
[tex]\[ 4(x + 6) = 4x + 24 \][/tex]
[tex]\[ 2(x - 6) = 2x - 12 \][/tex]
[tex]\[ 4x + 24 - (2x - 12) = 4x + 24 - 2x + 12 = 2x + 36 \][/tex]
So, the fraction now looks like:
[tex]\[ \frac{2x + 36}{(x - 6)(x + 6)^2} \][/tex]
5. Factor the Numerator and Simplify:
- The numerator [tex]\(2x + 36\)[/tex] can be factored as:
[tex]\[ 2(x + 18) \][/tex]
- This gives us:
[tex]\[ \frac{2(x + 18)}{(x - 6)(x + 6)^2} \][/tex]
- Simplify as far as possible.
Therefore, the simplified form of the given subtraction problem is:
[tex]\[ \frac{2(x + 18)}{(x - 6)(x + 6)^2} \][/tex]
This is the final simplified expression.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.