Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the [tex]\( r^2 \)[/tex] value for the given data, we need to follow the steps for performing linear regression. Below, I'll provide a detailed step-by-step solution to find the [tex]\( r^2 \)[/tex] value.
Given data:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 2 \\ \hline 2 & 10 \\ \hline 5 & 5 \\ \hline 7 & 18 \\ \hline 10 & 25 \\ \hline \end{array} \][/tex]
First, we'll calculate the necessary sums:
- [tex]\( \sum x \)[/tex]
- [tex]\( \sum y \)[/tex]
- [tex]\( \sum xy \)[/tex]
- [tex]\( \sum x^2 \)[/tex]
Using these sums, we can then apply the formulas for the slope [tex]\( m \)[/tex] and the intercept [tex]\( b \)[/tex] of the line [tex]\( y = mx + b \)[/tex]:
### Step 1: Calculate sums
[tex]\[ \sum x = 1 + 2 + 5 + 7 + 10 = 25 \][/tex]
[tex]\[ \sum y = 2 + 10 + 5 + 18 + 25 = 60 \][/tex]
[tex]\[ \sum xy = (1 \cdot 2) + (2 \cdot 10) + (5 \cdot 5) + (7 \cdot 18) + (10 \cdot 25) = 2 + 20 + 25 + 126 + 250 = 423 \][/tex]
[tex]\[ \sum x^2 = 1^2 + 2^2 + 5^2 + 7^2 + 10^2 = 1 + 4 + 25 + 49 + 100 = 179 \][/tex]
### Step 2: Calculate slope [tex]\( m \)[/tex] and intercept [tex]\( b \)[/tex]
Using the formulas for a line [tex]\( y = mx + b \)[/tex]:
[tex]\[ m = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2} \][/tex]
where [tex]\( n = 5 \)[/tex] (number of data points).
[tex]\[ m = \frac{5(423) - (25)(60)}{5(179) - (25)^2} = \frac{2115 - 1500}{895 - 625} = \frac{615}{270} = \frac{205}{90} \approx 2.278 \][/tex]
[tex]\[ b = \frac{\sum y - m(\sum x)}{n} \][/tex]
[tex]\[ b = \frac{60 - 2.278(25)}{5} = \frac{60 - 56.95}{5} = \frac{3.05}{5} \approx 0.61 \][/tex]
The equation of the regression line is approximately:
[tex]\[ y = 2.278x + 0.61 \][/tex]
### Step 3: Calculate predicted [tex]\( \hat{y} \)[/tex] values
[tex]\[ \hat{y}_1 = 2.278 \cdot 1 + 0.61 \approx 2.888 \][/tex]
[tex]\[ \hat{y}_2 = 2.278 \cdot 2 + 0.61 \approx 5.166 \][/tex]
[tex]\[ \hat{y}_3 = 2.278 \cdot 5 + 0.61 \approx 11.99 \][/tex]
[tex]\[ \hat{y}_4 = 2.278 \cdot 7 + 0.61 \approx 16.546 \][/tex]
[tex]\[ \hat{y}_5 = 2.278 \cdot 10 + 0.61 \approx 23.39 \][/tex]
### Step 4: Calculate [tex]\( r^2 \)[/tex]
The formula to compute [tex]\( r^2 \)[/tex] is:
[tex]\[ r^2 = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2} \][/tex]
where [tex]\( \bar{y} \)[/tex] is the mean of [tex]\( y \)[/tex]:
[tex]\[ \bar{y} = \frac{\sum y}{n} = \frac{60}{5} = 12 \][/tex]
Calculate the sum of squares:
[tex]\[ SS_{\text{tot}} = \sum (y_i - \bar{y})^2 = (2-12)^2 + (10-12)^2 + (5-12)^2 + (18-12)^2 + (25-12)^2 = 100 + 4 + 49 + 36 + 169 = 358 \][/tex]
[tex]\[ SS_{\text{res}} = \sum (y_i - \hat{y}_i)^2 = (2-2.888)^2 + (10-5.166)^2 + (5-11.99)^2 + (18-16.546)^2 + (25-23.39)^2 = 0.788^2 + 4.834^2 + 6.99^2 + 1.454^2 + 1.61^2 = 0.620 + 23.37 + 48.86 + 2.114 + 2.592 = 77.556 \][/tex]
Finally, compute [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = 1 - \frac{77.556}{358} \approx 1 - 0.217 = 0.783 \][/tex]
The value of [tex]\( r^2 \)[/tex] to three decimal places is:
\boxed{0.783}
Thus, the correct answer is D. 0.783.
Given data:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 2 \\ \hline 2 & 10 \\ \hline 5 & 5 \\ \hline 7 & 18 \\ \hline 10 & 25 \\ \hline \end{array} \][/tex]
First, we'll calculate the necessary sums:
- [tex]\( \sum x \)[/tex]
- [tex]\( \sum y \)[/tex]
- [tex]\( \sum xy \)[/tex]
- [tex]\( \sum x^2 \)[/tex]
Using these sums, we can then apply the formulas for the slope [tex]\( m \)[/tex] and the intercept [tex]\( b \)[/tex] of the line [tex]\( y = mx + b \)[/tex]:
### Step 1: Calculate sums
[tex]\[ \sum x = 1 + 2 + 5 + 7 + 10 = 25 \][/tex]
[tex]\[ \sum y = 2 + 10 + 5 + 18 + 25 = 60 \][/tex]
[tex]\[ \sum xy = (1 \cdot 2) + (2 \cdot 10) + (5 \cdot 5) + (7 \cdot 18) + (10 \cdot 25) = 2 + 20 + 25 + 126 + 250 = 423 \][/tex]
[tex]\[ \sum x^2 = 1^2 + 2^2 + 5^2 + 7^2 + 10^2 = 1 + 4 + 25 + 49 + 100 = 179 \][/tex]
### Step 2: Calculate slope [tex]\( m \)[/tex] and intercept [tex]\( b \)[/tex]
Using the formulas for a line [tex]\( y = mx + b \)[/tex]:
[tex]\[ m = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2} \][/tex]
where [tex]\( n = 5 \)[/tex] (number of data points).
[tex]\[ m = \frac{5(423) - (25)(60)}{5(179) - (25)^2} = \frac{2115 - 1500}{895 - 625} = \frac{615}{270} = \frac{205}{90} \approx 2.278 \][/tex]
[tex]\[ b = \frac{\sum y - m(\sum x)}{n} \][/tex]
[tex]\[ b = \frac{60 - 2.278(25)}{5} = \frac{60 - 56.95}{5} = \frac{3.05}{5} \approx 0.61 \][/tex]
The equation of the regression line is approximately:
[tex]\[ y = 2.278x + 0.61 \][/tex]
### Step 3: Calculate predicted [tex]\( \hat{y} \)[/tex] values
[tex]\[ \hat{y}_1 = 2.278 \cdot 1 + 0.61 \approx 2.888 \][/tex]
[tex]\[ \hat{y}_2 = 2.278 \cdot 2 + 0.61 \approx 5.166 \][/tex]
[tex]\[ \hat{y}_3 = 2.278 \cdot 5 + 0.61 \approx 11.99 \][/tex]
[tex]\[ \hat{y}_4 = 2.278 \cdot 7 + 0.61 \approx 16.546 \][/tex]
[tex]\[ \hat{y}_5 = 2.278 \cdot 10 + 0.61 \approx 23.39 \][/tex]
### Step 4: Calculate [tex]\( r^2 \)[/tex]
The formula to compute [tex]\( r^2 \)[/tex] is:
[tex]\[ r^2 = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2} \][/tex]
where [tex]\( \bar{y} \)[/tex] is the mean of [tex]\( y \)[/tex]:
[tex]\[ \bar{y} = \frac{\sum y}{n} = \frac{60}{5} = 12 \][/tex]
Calculate the sum of squares:
[tex]\[ SS_{\text{tot}} = \sum (y_i - \bar{y})^2 = (2-12)^2 + (10-12)^2 + (5-12)^2 + (18-12)^2 + (25-12)^2 = 100 + 4 + 49 + 36 + 169 = 358 \][/tex]
[tex]\[ SS_{\text{res}} = \sum (y_i - \hat{y}_i)^2 = (2-2.888)^2 + (10-5.166)^2 + (5-11.99)^2 + (18-16.546)^2 + (25-23.39)^2 = 0.788^2 + 4.834^2 + 6.99^2 + 1.454^2 + 1.61^2 = 0.620 + 23.37 + 48.86 + 2.114 + 2.592 = 77.556 \][/tex]
Finally, compute [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = 1 - \frac{77.556}{358} \approx 1 - 0.217 = 0.783 \][/tex]
The value of [tex]\( r^2 \)[/tex] to three decimal places is:
\boxed{0.783}
Thus, the correct answer is D. 0.783.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.