Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the [tex]\( r^2 \)[/tex] value for the given data, we need to follow the steps for performing linear regression. Below, I'll provide a detailed step-by-step solution to find the [tex]\( r^2 \)[/tex] value.
Given data:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 2 \\ \hline 2 & 10 \\ \hline 5 & 5 \\ \hline 7 & 18 \\ \hline 10 & 25 \\ \hline \end{array} \][/tex]
First, we'll calculate the necessary sums:
- [tex]\( \sum x \)[/tex]
- [tex]\( \sum y \)[/tex]
- [tex]\( \sum xy \)[/tex]
- [tex]\( \sum x^2 \)[/tex]
Using these sums, we can then apply the formulas for the slope [tex]\( m \)[/tex] and the intercept [tex]\( b \)[/tex] of the line [tex]\( y = mx + b \)[/tex]:
### Step 1: Calculate sums
[tex]\[ \sum x = 1 + 2 + 5 + 7 + 10 = 25 \][/tex]
[tex]\[ \sum y = 2 + 10 + 5 + 18 + 25 = 60 \][/tex]
[tex]\[ \sum xy = (1 \cdot 2) + (2 \cdot 10) + (5 \cdot 5) + (7 \cdot 18) + (10 \cdot 25) = 2 + 20 + 25 + 126 + 250 = 423 \][/tex]
[tex]\[ \sum x^2 = 1^2 + 2^2 + 5^2 + 7^2 + 10^2 = 1 + 4 + 25 + 49 + 100 = 179 \][/tex]
### Step 2: Calculate slope [tex]\( m \)[/tex] and intercept [tex]\( b \)[/tex]
Using the formulas for a line [tex]\( y = mx + b \)[/tex]:
[tex]\[ m = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2} \][/tex]
where [tex]\( n = 5 \)[/tex] (number of data points).
[tex]\[ m = \frac{5(423) - (25)(60)}{5(179) - (25)^2} = \frac{2115 - 1500}{895 - 625} = \frac{615}{270} = \frac{205}{90} \approx 2.278 \][/tex]
[tex]\[ b = \frac{\sum y - m(\sum x)}{n} \][/tex]
[tex]\[ b = \frac{60 - 2.278(25)}{5} = \frac{60 - 56.95}{5} = \frac{3.05}{5} \approx 0.61 \][/tex]
The equation of the regression line is approximately:
[tex]\[ y = 2.278x + 0.61 \][/tex]
### Step 3: Calculate predicted [tex]\( \hat{y} \)[/tex] values
[tex]\[ \hat{y}_1 = 2.278 \cdot 1 + 0.61 \approx 2.888 \][/tex]
[tex]\[ \hat{y}_2 = 2.278 \cdot 2 + 0.61 \approx 5.166 \][/tex]
[tex]\[ \hat{y}_3 = 2.278 \cdot 5 + 0.61 \approx 11.99 \][/tex]
[tex]\[ \hat{y}_4 = 2.278 \cdot 7 + 0.61 \approx 16.546 \][/tex]
[tex]\[ \hat{y}_5 = 2.278 \cdot 10 + 0.61 \approx 23.39 \][/tex]
### Step 4: Calculate [tex]\( r^2 \)[/tex]
The formula to compute [tex]\( r^2 \)[/tex] is:
[tex]\[ r^2 = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2} \][/tex]
where [tex]\( \bar{y} \)[/tex] is the mean of [tex]\( y \)[/tex]:
[tex]\[ \bar{y} = \frac{\sum y}{n} = \frac{60}{5} = 12 \][/tex]
Calculate the sum of squares:
[tex]\[ SS_{\text{tot}} = \sum (y_i - \bar{y})^2 = (2-12)^2 + (10-12)^2 + (5-12)^2 + (18-12)^2 + (25-12)^2 = 100 + 4 + 49 + 36 + 169 = 358 \][/tex]
[tex]\[ SS_{\text{res}} = \sum (y_i - \hat{y}_i)^2 = (2-2.888)^2 + (10-5.166)^2 + (5-11.99)^2 + (18-16.546)^2 + (25-23.39)^2 = 0.788^2 + 4.834^2 + 6.99^2 + 1.454^2 + 1.61^2 = 0.620 + 23.37 + 48.86 + 2.114 + 2.592 = 77.556 \][/tex]
Finally, compute [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = 1 - \frac{77.556}{358} \approx 1 - 0.217 = 0.783 \][/tex]
The value of [tex]\( r^2 \)[/tex] to three decimal places is:
\boxed{0.783}
Thus, the correct answer is D. 0.783.
Given data:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 2 \\ \hline 2 & 10 \\ \hline 5 & 5 \\ \hline 7 & 18 \\ \hline 10 & 25 \\ \hline \end{array} \][/tex]
First, we'll calculate the necessary sums:
- [tex]\( \sum x \)[/tex]
- [tex]\( \sum y \)[/tex]
- [tex]\( \sum xy \)[/tex]
- [tex]\( \sum x^2 \)[/tex]
Using these sums, we can then apply the formulas for the slope [tex]\( m \)[/tex] and the intercept [tex]\( b \)[/tex] of the line [tex]\( y = mx + b \)[/tex]:
### Step 1: Calculate sums
[tex]\[ \sum x = 1 + 2 + 5 + 7 + 10 = 25 \][/tex]
[tex]\[ \sum y = 2 + 10 + 5 + 18 + 25 = 60 \][/tex]
[tex]\[ \sum xy = (1 \cdot 2) + (2 \cdot 10) + (5 \cdot 5) + (7 \cdot 18) + (10 \cdot 25) = 2 + 20 + 25 + 126 + 250 = 423 \][/tex]
[tex]\[ \sum x^2 = 1^2 + 2^2 + 5^2 + 7^2 + 10^2 = 1 + 4 + 25 + 49 + 100 = 179 \][/tex]
### Step 2: Calculate slope [tex]\( m \)[/tex] and intercept [tex]\( b \)[/tex]
Using the formulas for a line [tex]\( y = mx + b \)[/tex]:
[tex]\[ m = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2} \][/tex]
where [tex]\( n = 5 \)[/tex] (number of data points).
[tex]\[ m = \frac{5(423) - (25)(60)}{5(179) - (25)^2} = \frac{2115 - 1500}{895 - 625} = \frac{615}{270} = \frac{205}{90} \approx 2.278 \][/tex]
[tex]\[ b = \frac{\sum y - m(\sum x)}{n} \][/tex]
[tex]\[ b = \frac{60 - 2.278(25)}{5} = \frac{60 - 56.95}{5} = \frac{3.05}{5} \approx 0.61 \][/tex]
The equation of the regression line is approximately:
[tex]\[ y = 2.278x + 0.61 \][/tex]
### Step 3: Calculate predicted [tex]\( \hat{y} \)[/tex] values
[tex]\[ \hat{y}_1 = 2.278 \cdot 1 + 0.61 \approx 2.888 \][/tex]
[tex]\[ \hat{y}_2 = 2.278 \cdot 2 + 0.61 \approx 5.166 \][/tex]
[tex]\[ \hat{y}_3 = 2.278 \cdot 5 + 0.61 \approx 11.99 \][/tex]
[tex]\[ \hat{y}_4 = 2.278 \cdot 7 + 0.61 \approx 16.546 \][/tex]
[tex]\[ \hat{y}_5 = 2.278 \cdot 10 + 0.61 \approx 23.39 \][/tex]
### Step 4: Calculate [tex]\( r^2 \)[/tex]
The formula to compute [tex]\( r^2 \)[/tex] is:
[tex]\[ r^2 = 1 - \frac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2} \][/tex]
where [tex]\( \bar{y} \)[/tex] is the mean of [tex]\( y \)[/tex]:
[tex]\[ \bar{y} = \frac{\sum y}{n} = \frac{60}{5} = 12 \][/tex]
Calculate the sum of squares:
[tex]\[ SS_{\text{tot}} = \sum (y_i - \bar{y})^2 = (2-12)^2 + (10-12)^2 + (5-12)^2 + (18-12)^2 + (25-12)^2 = 100 + 4 + 49 + 36 + 169 = 358 \][/tex]
[tex]\[ SS_{\text{res}} = \sum (y_i - \hat{y}_i)^2 = (2-2.888)^2 + (10-5.166)^2 + (5-11.99)^2 + (18-16.546)^2 + (25-23.39)^2 = 0.788^2 + 4.834^2 + 6.99^2 + 1.454^2 + 1.61^2 = 0.620 + 23.37 + 48.86 + 2.114 + 2.592 = 77.556 \][/tex]
Finally, compute [tex]\( r^2 \)[/tex]:
[tex]\[ r^2 = 1 - \frac{77.556}{358} \approx 1 - 0.217 = 0.783 \][/tex]
The value of [tex]\( r^2 \)[/tex] to three decimal places is:
\boxed{0.783}
Thus, the correct answer is D. 0.783.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.