Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the mass of [tex]\( \text{NaOH} \)[/tex] needed to make [tex]\( 2.500 \, \text{L} \)[/tex] of a [tex]\( 2.000 \, \text{M} \, \text{NaOH} \)[/tex] solution, we will proceed with the following steps:
1. Understand Molarity: Molarity (M) is defined as the number of moles of solute per liter of solution. The formula for molarity is:
[tex]\[ \text{Molarity (M)} = \frac{\text{moles of solute}}{\text{liters of solution}} \][/tex]
2. Given Values:
- Molarity (M) = [tex]\( 2.000 \, \text{M} \)[/tex]
- Volume of solution (V) = [tex]\( 2.500 \, \text{L} \)[/tex]
- Molar Mass of [tex]\( \text{NaOH} \)[/tex] = [tex]\( 40.00 \, \text{g/mol} \)[/tex]
3. Calculate the Moles of NaOH Required:
Using the molarity formula, we need to find the number of moles of [tex]\( \text{NaOH} \)[/tex]:
[tex]\[ \text{Moles of NaOH} = \text{Molarity} \times \text{Volume of solution} \][/tex]
Substituting the given values:
[tex]\[ \text{Moles of NaOH} = 2.000 \, \text{M} \times 2.500 \, \text{L} = 5.000 \, \text{moles} \][/tex]
4. Convert Moles to Mass:
To find out the mass of [tex]\( \text{NaOH} \)[/tex] required, we need to use the molar mass.
[tex]\[ \text{Mass of NaOH} = \text{Moles of NaOH} \times \text{Molar mass of NaOH} \][/tex]
Substituting the values:
[tex]\[ \text{Mass of NaOH} = 5.000 \, \text{moles} \times 40.00 \, \text{g/mol} = 200.0 \, \text{g} \][/tex]
Therefore, the mass of [tex]\( \text{NaOH} \)[/tex] needed to make [tex]\( 2.500 \, \text{L} \)[/tex] of a [tex]\( 2.000 \, \text{M} \)[/tex] solution is [tex]\( 200.0 \, \text{g} \)[/tex].
From the given options, the correct answer is:
[tex]\[ \boxed{200.0 \, \text{g}} \][/tex]
1. Understand Molarity: Molarity (M) is defined as the number of moles of solute per liter of solution. The formula for molarity is:
[tex]\[ \text{Molarity (M)} = \frac{\text{moles of solute}}{\text{liters of solution}} \][/tex]
2. Given Values:
- Molarity (M) = [tex]\( 2.000 \, \text{M} \)[/tex]
- Volume of solution (V) = [tex]\( 2.500 \, \text{L} \)[/tex]
- Molar Mass of [tex]\( \text{NaOH} \)[/tex] = [tex]\( 40.00 \, \text{g/mol} \)[/tex]
3. Calculate the Moles of NaOH Required:
Using the molarity formula, we need to find the number of moles of [tex]\( \text{NaOH} \)[/tex]:
[tex]\[ \text{Moles of NaOH} = \text{Molarity} \times \text{Volume of solution} \][/tex]
Substituting the given values:
[tex]\[ \text{Moles of NaOH} = 2.000 \, \text{M} \times 2.500 \, \text{L} = 5.000 \, \text{moles} \][/tex]
4. Convert Moles to Mass:
To find out the mass of [tex]\( \text{NaOH} \)[/tex] required, we need to use the molar mass.
[tex]\[ \text{Mass of NaOH} = \text{Moles of NaOH} \times \text{Molar mass of NaOH} \][/tex]
Substituting the values:
[tex]\[ \text{Mass of NaOH} = 5.000 \, \text{moles} \times 40.00 \, \text{g/mol} = 200.0 \, \text{g} \][/tex]
Therefore, the mass of [tex]\( \text{NaOH} \)[/tex] needed to make [tex]\( 2.500 \, \text{L} \)[/tex] of a [tex]\( 2.000 \, \text{M} \)[/tex] solution is [tex]\( 200.0 \, \text{g} \)[/tex].
From the given options, the correct answer is:
[tex]\[ \boxed{200.0 \, \text{g}} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.