Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the concentration of the new solution, we can follow these steps:
1. Calculate the moles of solute in the initial solution:
Given:
- The mass of solute (ammonium sulfate, [tex]\((NH_4)_2SO_4\)[/tex]) is [tex]\( 66.05 \)[/tex] grams.
- The molar mass of [tex]\((NH_4)_2SO_4\)[/tex] is [tex]\( 132.1 \)[/tex] [tex]\(\text{g/mol}\)[/tex].
The number of moles is calculated using the formula:
[tex]\[ \text{moles of solute} = \frac{\text{mass of solute}}{\text{molar mass}} \][/tex]
[tex]\[ \text{moles of solute} = \frac{66.05 \text{ g}}{132.1 \text{ g/mol}} = 0.500 \text{ mol} \][/tex]
2. Convert the initial volume of the solution from mL to L:
Given:
- The initial volume of the solution is [tex]\( 250 \)[/tex] mL.
To convert mL to L:
[tex]\[ \text{Volume in liters} = \frac{\text{Volume in mL}}{1000} \][/tex]
[tex]\[ \text{Volume in liters} = \frac{250 \text{ mL}}{1000} = 0.250 \text{ L} \][/tex]
3. Calculate the molarity of the initial solution:
Molarity (M) is given by:
[tex]\[ M = \frac{\text{moles of solute}}{\text{liters of solution}} \][/tex]
[tex]\[ M = \frac{0.500 \text{ mol}}{0.250 \text{ L}} = 2.00 \text{ M} \][/tex]
4. Determine the volume of the sample taken from the initial solution and its molarity:
Given:
- The volume of the sample taken is [tex]\( 10.0 \)[/tex] mL.
- The volume of the diluted solution is [tex]\( 50.0 \)[/tex] mL.
First, convert the sample volume and the diluted solution volume to liters:
[tex]\[ \text{Volume of the sample in liters} = \frac{10.0 \text{ mL}}{1000} = 0.010 \text{ L} \][/tex]
[tex]\[ \text{Volume of the diluted solution in liters} = \frac{50.0 \text{ mL}}{1000} = 0.050 \text{ L} \][/tex]
5. Use the dilution formula [tex]\( M_i V_i = M_1 V_f \)[/tex] to calculate the molarity of the new solution:
Where:
- [tex]\( M_i \)[/tex] = Initial molarity of the solution = [tex]\( 2.00 \text{ M} \)[/tex]
- [tex]\( V_i \)[/tex] = Initial volume of the sample = [tex]\( 0.010 \text{ L} \)[/tex]
- [tex]\( M_1 \)[/tex] = Final molarity of the new solution = ?
- [tex]\( V_f \)[/tex] = Final volume of the new (diluted) solution = [tex]\( 0.050 \text{ L} \)[/tex]
Rearrange the dilution formula to solve for [tex]\( M_1 \)[/tex]:
[tex]\[ M_1 = \frac{M_i V_i}{V_f} \][/tex]
Substitute the given values:
[tex]\[ M_1 = \frac{2.00 \text{ M} \times 0.010 \text{ L}}{0.050 \text{ L}} = 0.40 \text{ M} \][/tex]
Therefore, the concentration of the new solution is [tex]\( 0.400 \text{ M} \)[/tex]. The correct answer is [tex]\( 0.400 \text{ M} \)[/tex].
1. Calculate the moles of solute in the initial solution:
Given:
- The mass of solute (ammonium sulfate, [tex]\((NH_4)_2SO_4\)[/tex]) is [tex]\( 66.05 \)[/tex] grams.
- The molar mass of [tex]\((NH_4)_2SO_4\)[/tex] is [tex]\( 132.1 \)[/tex] [tex]\(\text{g/mol}\)[/tex].
The number of moles is calculated using the formula:
[tex]\[ \text{moles of solute} = \frac{\text{mass of solute}}{\text{molar mass}} \][/tex]
[tex]\[ \text{moles of solute} = \frac{66.05 \text{ g}}{132.1 \text{ g/mol}} = 0.500 \text{ mol} \][/tex]
2. Convert the initial volume of the solution from mL to L:
Given:
- The initial volume of the solution is [tex]\( 250 \)[/tex] mL.
To convert mL to L:
[tex]\[ \text{Volume in liters} = \frac{\text{Volume in mL}}{1000} \][/tex]
[tex]\[ \text{Volume in liters} = \frac{250 \text{ mL}}{1000} = 0.250 \text{ L} \][/tex]
3. Calculate the molarity of the initial solution:
Molarity (M) is given by:
[tex]\[ M = \frac{\text{moles of solute}}{\text{liters of solution}} \][/tex]
[tex]\[ M = \frac{0.500 \text{ mol}}{0.250 \text{ L}} = 2.00 \text{ M} \][/tex]
4. Determine the volume of the sample taken from the initial solution and its molarity:
Given:
- The volume of the sample taken is [tex]\( 10.0 \)[/tex] mL.
- The volume of the diluted solution is [tex]\( 50.0 \)[/tex] mL.
First, convert the sample volume and the diluted solution volume to liters:
[tex]\[ \text{Volume of the sample in liters} = \frac{10.0 \text{ mL}}{1000} = 0.010 \text{ L} \][/tex]
[tex]\[ \text{Volume of the diluted solution in liters} = \frac{50.0 \text{ mL}}{1000} = 0.050 \text{ L} \][/tex]
5. Use the dilution formula [tex]\( M_i V_i = M_1 V_f \)[/tex] to calculate the molarity of the new solution:
Where:
- [tex]\( M_i \)[/tex] = Initial molarity of the solution = [tex]\( 2.00 \text{ M} \)[/tex]
- [tex]\( V_i \)[/tex] = Initial volume of the sample = [tex]\( 0.010 \text{ L} \)[/tex]
- [tex]\( M_1 \)[/tex] = Final molarity of the new solution = ?
- [tex]\( V_f \)[/tex] = Final volume of the new (diluted) solution = [tex]\( 0.050 \text{ L} \)[/tex]
Rearrange the dilution formula to solve for [tex]\( M_1 \)[/tex]:
[tex]\[ M_1 = \frac{M_i V_i}{V_f} \][/tex]
Substitute the given values:
[tex]\[ M_1 = \frac{2.00 \text{ M} \times 0.010 \text{ L}}{0.050 \text{ L}} = 0.40 \text{ M} \][/tex]
Therefore, the concentration of the new solution is [tex]\( 0.400 \text{ M} \)[/tex]. The correct answer is [tex]\( 0.400 \text{ M} \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.