Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the most concentrated solution among the given options, we need to compare the molarities (concentrations in moles per liter) of each solution. Let's list the given solutions with their respective concentrations:
1. [tex]\( 2.0 \, \text{mL} \)[/tex] of [tex]\( 10 \, M \, \text{H}_2\text{SO}_4 \)[/tex]
2. [tex]\( 5.0 \, \text{mL} \)[/tex] of [tex]\( 1.0 \, M \, \text{PbSO}_4 \)[/tex]
3. [tex]\( 2.0 \, \text{mL} \)[/tex] of [tex]\( 10.5 \, M \, \text{H}_2\text{O}_2 \)[/tex]
4. [tex]\( 100.0 \, \text{mL} \)[/tex] of [tex]\( 10 \, M \, \text{NaCl} \)[/tex]
The concentration of a solution is typically measured in molarity (M), which represents the number of moles of solute per liter of solution. Since the molarity values are already given, we can directly compare these values to find the most concentrated solution without needing to consider the volume or the molar mass of the solutes.
Let's list the molarities for each solution again:
1. [tex]\(\text{H}_2\text{SO}_4\)[/tex] has a concentration of [tex]\(10 \, M\)[/tex]
2. [tex]\(\text{PbSO}_4\)[/tex] has a concentration of [tex]\(1.0 \, M\)[/tex]
3. [tex]\(\text{H}_2\text{O}_2\)[/tex] has a concentration of [tex]\(10.5 \, M\)[/tex]
4. [tex]\(\text{NaCl}\)[/tex] has a concentration of [tex]\(10 \, M\)[/tex]
From these values, it's clear that the highest molarity among the solutions is [tex]\(10.5 \, M\)[/tex].
Therefore, the most concentrated solution is [tex]\( \text{H}_2\text{O}_2 \)[/tex] with a molarity of [tex]\( 10.5 \, M \)[/tex].
1. [tex]\( 2.0 \, \text{mL} \)[/tex] of [tex]\( 10 \, M \, \text{H}_2\text{SO}_4 \)[/tex]
2. [tex]\( 5.0 \, \text{mL} \)[/tex] of [tex]\( 1.0 \, M \, \text{PbSO}_4 \)[/tex]
3. [tex]\( 2.0 \, \text{mL} \)[/tex] of [tex]\( 10.5 \, M \, \text{H}_2\text{O}_2 \)[/tex]
4. [tex]\( 100.0 \, \text{mL} \)[/tex] of [tex]\( 10 \, M \, \text{NaCl} \)[/tex]
The concentration of a solution is typically measured in molarity (M), which represents the number of moles of solute per liter of solution. Since the molarity values are already given, we can directly compare these values to find the most concentrated solution without needing to consider the volume or the molar mass of the solutes.
Let's list the molarities for each solution again:
1. [tex]\(\text{H}_2\text{SO}_4\)[/tex] has a concentration of [tex]\(10 \, M\)[/tex]
2. [tex]\(\text{PbSO}_4\)[/tex] has a concentration of [tex]\(1.0 \, M\)[/tex]
3. [tex]\(\text{H}_2\text{O}_2\)[/tex] has a concentration of [tex]\(10.5 \, M\)[/tex]
4. [tex]\(\text{NaCl}\)[/tex] has a concentration of [tex]\(10 \, M\)[/tex]
From these values, it's clear that the highest molarity among the solutions is [tex]\(10.5 \, M\)[/tex].
Therefore, the most concentrated solution is [tex]\( \text{H}_2\text{O}_2 \)[/tex] with a molarity of [tex]\( 10.5 \, M \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.