Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the most concentrated solution among the given options, we need to compare the molarities (concentrations in moles per liter) of each solution. Let's list the given solutions with their respective concentrations:
1. [tex]\( 2.0 \, \text{mL} \)[/tex] of [tex]\( 10 \, M \, \text{H}_2\text{SO}_4 \)[/tex]
2. [tex]\( 5.0 \, \text{mL} \)[/tex] of [tex]\( 1.0 \, M \, \text{PbSO}_4 \)[/tex]
3. [tex]\( 2.0 \, \text{mL} \)[/tex] of [tex]\( 10.5 \, M \, \text{H}_2\text{O}_2 \)[/tex]
4. [tex]\( 100.0 \, \text{mL} \)[/tex] of [tex]\( 10 \, M \, \text{NaCl} \)[/tex]
The concentration of a solution is typically measured in molarity (M), which represents the number of moles of solute per liter of solution. Since the molarity values are already given, we can directly compare these values to find the most concentrated solution without needing to consider the volume or the molar mass of the solutes.
Let's list the molarities for each solution again:
1. [tex]\(\text{H}_2\text{SO}_4\)[/tex] has a concentration of [tex]\(10 \, M\)[/tex]
2. [tex]\(\text{PbSO}_4\)[/tex] has a concentration of [tex]\(1.0 \, M\)[/tex]
3. [tex]\(\text{H}_2\text{O}_2\)[/tex] has a concentration of [tex]\(10.5 \, M\)[/tex]
4. [tex]\(\text{NaCl}\)[/tex] has a concentration of [tex]\(10 \, M\)[/tex]
From these values, it's clear that the highest molarity among the solutions is [tex]\(10.5 \, M\)[/tex].
Therefore, the most concentrated solution is [tex]\( \text{H}_2\text{O}_2 \)[/tex] with a molarity of [tex]\( 10.5 \, M \)[/tex].
1. [tex]\( 2.0 \, \text{mL} \)[/tex] of [tex]\( 10 \, M \, \text{H}_2\text{SO}_4 \)[/tex]
2. [tex]\( 5.0 \, \text{mL} \)[/tex] of [tex]\( 1.0 \, M \, \text{PbSO}_4 \)[/tex]
3. [tex]\( 2.0 \, \text{mL} \)[/tex] of [tex]\( 10.5 \, M \, \text{H}_2\text{O}_2 \)[/tex]
4. [tex]\( 100.0 \, \text{mL} \)[/tex] of [tex]\( 10 \, M \, \text{NaCl} \)[/tex]
The concentration of a solution is typically measured in molarity (M), which represents the number of moles of solute per liter of solution. Since the molarity values are already given, we can directly compare these values to find the most concentrated solution without needing to consider the volume or the molar mass of the solutes.
Let's list the molarities for each solution again:
1. [tex]\(\text{H}_2\text{SO}_4\)[/tex] has a concentration of [tex]\(10 \, M\)[/tex]
2. [tex]\(\text{PbSO}_4\)[/tex] has a concentration of [tex]\(1.0 \, M\)[/tex]
3. [tex]\(\text{H}_2\text{O}_2\)[/tex] has a concentration of [tex]\(10.5 \, M\)[/tex]
4. [tex]\(\text{NaCl}\)[/tex] has a concentration of [tex]\(10 \, M\)[/tex]
From these values, it's clear that the highest molarity among the solutions is [tex]\(10.5 \, M\)[/tex].
Therefore, the most concentrated solution is [tex]\( \text{H}_2\text{O}_2 \)[/tex] with a molarity of [tex]\( 10.5 \, M \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.