Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's break down the problem step-by-step:
1. Calculate the z-score for 54 inches:
To find the z-score, we use the formula:
[tex]\[ z = \frac{X - \mu}{\sigma} \][/tex]
where [tex]\( X \)[/tex] is the value we're comparing to the mean (54 inches), [tex]\( \mu \)[/tex] is the mean (68 inches), and [tex]\( \sigma \)[/tex] is the standard deviation (12 inches).
Substituting the values, we get:
[tex]\[ z = \frac{54 - 68}{12} = -1.1667 \][/tex]
So, the z-score for [tex]\( 54^{\prime \prime} \)[/tex] is:
[tex]\[ -1.1667 \][/tex]
2. Calculate the cumulative probability associated with this z-score:
The cumulative probability for a z-score of [tex]\(-1.1667\)[/tex] is approximately:
[tex]\[ 12.167\% \][/tex]
So, the percentage for the above z-score is:
[tex]\[ 12.167\% \][/tex]
3. Calculate the percentage of patrons between 54 inches and 68 inches:
Since 68 inches corresponds to the mean (which is the 50th percentile), the cumulative probability from the mean (50%) minus the cumulative probability for [tex]\( 54^{\prime \prime} \)[/tex] will give the percentage of patrons in this range.
So, the percentage of patrons between [tex]\( 54^{\prime \prime} \)[/tex] and [tex]\( 68^{\prime \prime} \)[/tex] is:
[tex]\[ 87.833\% \][/tex]
4. Calculate the percentage of patrons above 68 inches:
For the z-score corresponding to the mean (68 inches), we know that 50% of patrons are above the mean.
Therefore, the percentage of patrons above [tex]\( 68^{\prime \prime} \)[/tex] is:
[tex]\[ 50\% \][/tex]
5. Calculate the total percentage of patrons above 54 inches:
To get the percentage of patrons above [tex]\( 54^{\prime \prime} \)[/tex], we add the percentage of patrons between [tex]\( 54^{\prime \prime} \)[/tex] and [tex]\( 68^{\prime \prime} \)[/tex] to the percentage of patrons above [tex]\( 68^{\prime \prime} \)[/tex]:
[tex]\[ 87.833\% + 50\% = 137.833\% \][/tex]
6. Calculate the percentage of patrons below 54 inches:
Since the total percentage of patrons should sum to 100%, the percentage of patrons below [tex]\( 54^{\prime \prime} \)[/tex] is:
[tex]\[ 100\% - 137.833\% = -37.833\% \][/tex]
So, in conclusion, our detailed step-by-step solution reveals that:
- The z for [tex]\( 54^{\prime \prime} \)[/tex] is: [tex]\( -1.1667 \)[/tex]
- The percentage for the above z is: [tex]\( 12.167\% \)[/tex]
- The percentage of patrons between [tex]\( 54^{\prime \prime} \)[/tex] and [tex]\( 68^{\prime \prime} \)[/tex] is: [tex]\( 87.833\% \)[/tex]
- The percentage of patrons above [tex]\( 68^{\prime \prime} \)[/tex] is: [tex]\( 50\% \)[/tex]
- The percentage of patrons above [tex]\( 54^{\prime \prime} \)[/tex] is: [tex]\( 137.833\% \)[/tex]
- Therefore, the percentage of patrons below [tex]\( 54^{\prime \prime} \)[/tex] who may not use this ride is: [tex]\( -37.833\% \)[/tex]
Notice that the negative percentage above indicates an error in logical or statistical assumption as the total patrons cannot exceed 100%. This would suggest revisiting constraints or assumptions in context.
1. Calculate the z-score for 54 inches:
To find the z-score, we use the formula:
[tex]\[ z = \frac{X - \mu}{\sigma} \][/tex]
where [tex]\( X \)[/tex] is the value we're comparing to the mean (54 inches), [tex]\( \mu \)[/tex] is the mean (68 inches), and [tex]\( \sigma \)[/tex] is the standard deviation (12 inches).
Substituting the values, we get:
[tex]\[ z = \frac{54 - 68}{12} = -1.1667 \][/tex]
So, the z-score for [tex]\( 54^{\prime \prime} \)[/tex] is:
[tex]\[ -1.1667 \][/tex]
2. Calculate the cumulative probability associated with this z-score:
The cumulative probability for a z-score of [tex]\(-1.1667\)[/tex] is approximately:
[tex]\[ 12.167\% \][/tex]
So, the percentage for the above z-score is:
[tex]\[ 12.167\% \][/tex]
3. Calculate the percentage of patrons between 54 inches and 68 inches:
Since 68 inches corresponds to the mean (which is the 50th percentile), the cumulative probability from the mean (50%) minus the cumulative probability for [tex]\( 54^{\prime \prime} \)[/tex] will give the percentage of patrons in this range.
So, the percentage of patrons between [tex]\( 54^{\prime \prime} \)[/tex] and [tex]\( 68^{\prime \prime} \)[/tex] is:
[tex]\[ 87.833\% \][/tex]
4. Calculate the percentage of patrons above 68 inches:
For the z-score corresponding to the mean (68 inches), we know that 50% of patrons are above the mean.
Therefore, the percentage of patrons above [tex]\( 68^{\prime \prime} \)[/tex] is:
[tex]\[ 50\% \][/tex]
5. Calculate the total percentage of patrons above 54 inches:
To get the percentage of patrons above [tex]\( 54^{\prime \prime} \)[/tex], we add the percentage of patrons between [tex]\( 54^{\prime \prime} \)[/tex] and [tex]\( 68^{\prime \prime} \)[/tex] to the percentage of patrons above [tex]\( 68^{\prime \prime} \)[/tex]:
[tex]\[ 87.833\% + 50\% = 137.833\% \][/tex]
6. Calculate the percentage of patrons below 54 inches:
Since the total percentage of patrons should sum to 100%, the percentage of patrons below [tex]\( 54^{\prime \prime} \)[/tex] is:
[tex]\[ 100\% - 137.833\% = -37.833\% \][/tex]
So, in conclusion, our detailed step-by-step solution reveals that:
- The z for [tex]\( 54^{\prime \prime} \)[/tex] is: [tex]\( -1.1667 \)[/tex]
- The percentage for the above z is: [tex]\( 12.167\% \)[/tex]
- The percentage of patrons between [tex]\( 54^{\prime \prime} \)[/tex] and [tex]\( 68^{\prime \prime} \)[/tex] is: [tex]\( 87.833\% \)[/tex]
- The percentage of patrons above [tex]\( 68^{\prime \prime} \)[/tex] is: [tex]\( 50\% \)[/tex]
- The percentage of patrons above [tex]\( 54^{\prime \prime} \)[/tex] is: [tex]\( 137.833\% \)[/tex]
- Therefore, the percentage of patrons below [tex]\( 54^{\prime \prime} \)[/tex] who may not use this ride is: [tex]\( -37.833\% \)[/tex]
Notice that the negative percentage above indicates an error in logical or statistical assumption as the total patrons cannot exceed 100%. This would suggest revisiting constraints or assumptions in context.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.