Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the volume of [tex]\(3.00 \, \text{M} \, \text{HCl}\)[/tex] needed to prepare a [tex]\(50.0 \, \text{mL}\)[/tex] sample of [tex]\(1.80 \, \text{M} \, \text{HCl}\)[/tex], we can use the dilution formula:
[tex]\[ M_i V_i = M_f V_f \][/tex]
where:
- [tex]\(M_i\)[/tex] is the initial concentration of the HCl solution.
- [tex]\(V_i\)[/tex] is the initial volume of the HCl solution that we need to find.
- [tex]\(M_f\)[/tex] is the final concentration of the diluted HCl solution.
- [tex]\(V_f\)[/tex] is the final volume of the diluted HCl solution.
Given values:
- [tex]\(M_i = 3.00 \, \text{M}\)[/tex]
- [tex]\(M_f = 1.80 \, \text{M}\)[/tex]
- [tex]\(V_f = 50.0 \, \text{mL}\)[/tex]
Substituting these values into the formula:
[tex]\[ 3.00 \, \text{M} \times V_i = 1.80 \, \text{M} \times 50.0 \, \text{mL} \][/tex]
Solving for [tex]\(V_i\)[/tex]:
[tex]\[ V_i = \frac{1.80 \, \text{M} \times 50.0 \, \text{mL}}{3.00 \, \text{M}} \][/tex]
Calculating the right-hand side:
[tex]\[ V_i = \frac{90.0 \, \text{M} \cdot \text{mL}}{3.00 \, \text{M}} \][/tex]
[tex]\[ V_i = 30.0 \, \text{mL} \][/tex]
Therefore, the volume of [tex]\(3.00 \, \text{M} \, \text{HCl}\)[/tex] used by the student to make the [tex]\(50.0 \, \text{mL}\)[/tex] sample of [tex]\(1.80 \, \text{M} \, \text{HCl}\)[/tex] is [tex]\(\boxed{30.0 \, \text{mL}}\)[/tex].
[tex]\[ M_i V_i = M_f V_f \][/tex]
where:
- [tex]\(M_i\)[/tex] is the initial concentration of the HCl solution.
- [tex]\(V_i\)[/tex] is the initial volume of the HCl solution that we need to find.
- [tex]\(M_f\)[/tex] is the final concentration of the diluted HCl solution.
- [tex]\(V_f\)[/tex] is the final volume of the diluted HCl solution.
Given values:
- [tex]\(M_i = 3.00 \, \text{M}\)[/tex]
- [tex]\(M_f = 1.80 \, \text{M}\)[/tex]
- [tex]\(V_f = 50.0 \, \text{mL}\)[/tex]
Substituting these values into the formula:
[tex]\[ 3.00 \, \text{M} \times V_i = 1.80 \, \text{M} \times 50.0 \, \text{mL} \][/tex]
Solving for [tex]\(V_i\)[/tex]:
[tex]\[ V_i = \frac{1.80 \, \text{M} \times 50.0 \, \text{mL}}{3.00 \, \text{M}} \][/tex]
Calculating the right-hand side:
[tex]\[ V_i = \frac{90.0 \, \text{M} \cdot \text{mL}}{3.00 \, \text{M}} \][/tex]
[tex]\[ V_i = 30.0 \, \text{mL} \][/tex]
Therefore, the volume of [tex]\(3.00 \, \text{M} \, \text{HCl}\)[/tex] used by the student to make the [tex]\(50.0 \, \text{mL}\)[/tex] sample of [tex]\(1.80 \, \text{M} \, \text{HCl}\)[/tex] is [tex]\(\boxed{30.0 \, \text{mL}}\)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.