Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve this problem, we need to determine the volume of the 18.0 M stock solution required to make 50.0 mL of a 2.50 M solution of [tex]\( H_2SO_4 \)[/tex].
We can use the dilution formula, which is:
[tex]\[ M_i \times V_i = M_f \times V_f \][/tex]
Here:
- [tex]\( M_i \)[/tex] is the initial concentration of the stock solution, which is 18.0 M.
- [tex]\( V_i \)[/tex] is the volume of the stock solution we need to find.
- [tex]\( M_f \)[/tex] is the final concentration required, which is 2.50 M.
- [tex]\( V_f \)[/tex] is the final volume required, which is 50.0 mL.
Let's plug these values into the formula and solve for [tex]\( V_i \)[/tex]:
[tex]\[ 18.0 \times V_i = 2.50 \times 50.0 \][/tex]
First, calculate the right-hand side:
[tex]\[ 2.50 \times 50.0 = 125.0 \][/tex]
So the equation becomes:
[tex]\[ 18.0 \times V_i = 125.0 \][/tex]
Now, solve for [tex]\( V_i \)[/tex]:
[tex]\[ V_i = \frac{125.0}{18.0} \][/tex]
[tex]\[ V_i \approx 6.9444 \, \text{mL} \][/tex]
Therefore, the volume of the stock solution required is approximately 6.9444 mL.
Among the given choices:
- 0.900 mL
- 1.11 mL
- 6.94 mL
- 7.20 mL
The closest match to 6.9444 mL is 6.94 mL.
Thus, the volume of the 18.0 M stock solution the students should use to prepare 50.0 mL of 2.50 M [tex]\( H_2SO_4 \)[/tex] is:
6.94 mL.
We can use the dilution formula, which is:
[tex]\[ M_i \times V_i = M_f \times V_f \][/tex]
Here:
- [tex]\( M_i \)[/tex] is the initial concentration of the stock solution, which is 18.0 M.
- [tex]\( V_i \)[/tex] is the volume of the stock solution we need to find.
- [tex]\( M_f \)[/tex] is the final concentration required, which is 2.50 M.
- [tex]\( V_f \)[/tex] is the final volume required, which is 50.0 mL.
Let's plug these values into the formula and solve for [tex]\( V_i \)[/tex]:
[tex]\[ 18.0 \times V_i = 2.50 \times 50.0 \][/tex]
First, calculate the right-hand side:
[tex]\[ 2.50 \times 50.0 = 125.0 \][/tex]
So the equation becomes:
[tex]\[ 18.0 \times V_i = 125.0 \][/tex]
Now, solve for [tex]\( V_i \)[/tex]:
[tex]\[ V_i = \frac{125.0}{18.0} \][/tex]
[tex]\[ V_i \approx 6.9444 \, \text{mL} \][/tex]
Therefore, the volume of the stock solution required is approximately 6.9444 mL.
Among the given choices:
- 0.900 mL
- 1.11 mL
- 6.94 mL
- 7.20 mL
The closest match to 6.9444 mL is 6.94 mL.
Thus, the volume of the 18.0 M stock solution the students should use to prepare 50.0 mL of 2.50 M [tex]\( H_2SO_4 \)[/tex] is:
6.94 mL.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.