Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's find a cubic (third-degree) polynomial function [tex]\( f(x) \)[/tex] with real coefficients given the following conditions:
1. The polynomial has real coefficients.
2. It has zeros at 3 and [tex]\( 2i \)[/tex] where [tex]\( i \)[/tex] is the imaginary unit.
3. It satisfies the condition [tex]\( f(2) = 16 \)[/tex].
### Step-by-Step Solution:
#### 1. Determine All Zeros
First, note that since the polynomial has real coefficients and [tex]\( 2i \)[/tex] is a zero, its complex conjugate [tex]\( -2i \)[/tex] must also be a zero. Therefore, the zeros of the polynomial are:
- [tex]\( 3 \)[/tex]
- [tex]\( 2i \)[/tex]
- [tex]\( -2i \)[/tex]
#### 2. Construct the Polynomial from its Zeros
The polynomial can be written in its factored form using its zeros:
[tex]\[ f(x) = a(x - 3)(x - 2i)(x + 2i) \][/tex]
where [tex]\( a \)[/tex] is a real-valued leading coefficient.
#### 3. Simplify the Polynomial
To simplify the polynomial, first multiply the factors involving the complex zeros:
[tex]\[ (x - 2i)(x + 2i) = x^2 - (2i)^2 = x^2 - (-4) = x^2 + 4 \][/tex]
Now, the polynomial becomes:
[tex]\[ f(x) = a(x - 3)(x^2 + 4) \][/tex]
Expand this expression:
[tex]\[ f(x) = a[(x - 3)(x^2 + 4)] = a(x^3 + 4x - 3x^2 - 12) \][/tex]
[tex]\[ f(x) = a(x^3 - 3x^2 + 4x - 12) \][/tex]
#### 4. Determine the Leading Coefficient [tex]\( a \)[/tex]
We know that [tex]\( f(2) = 16 \)[/tex]. Substitute [tex]\( x = 2 \)[/tex] into the expanded polynomial and solve for [tex]\( a \)[/tex]:
[tex]\[ 16 = a(2^3 - 3(2)^2 + 4(2) - 12) \][/tex]
Calculate the values inside the parentheses:
[tex]\[ 2^3 = 8, \quad 3(2^2) = 3(4) = 12, \quad 4(2) = 8, \quad \text{and} \quad -12 = -12 \][/tex]
[tex]\[ f(2) = a(8 - 12 + 8 - 12) = 16 \][/tex]
[tex]\[ 16 = a(-8) = 16 \][/tex]
Thus:
[tex]\[ a = \frac{16}{-8} = -2 \][/tex]
#### 5. Write the Final Polynomial Function
Substitute [tex]\( a = -2 \)[/tex] back into the polynomial function:
[tex]\[ f(x) = -2(x^3 - 3x^2 + 4x - 12) \][/tex]
Distribute [tex]\( -2 \)[/tex]:
[tex]\[ f(x) = -2x^3 + 6x^2 - 8x + 24 \][/tex]
### Final Answer:
[tex]\[ f(x) = -2x^3 + 6x^2 - 8x + 24 \][/tex]
1. The polynomial has real coefficients.
2. It has zeros at 3 and [tex]\( 2i \)[/tex] where [tex]\( i \)[/tex] is the imaginary unit.
3. It satisfies the condition [tex]\( f(2) = 16 \)[/tex].
### Step-by-Step Solution:
#### 1. Determine All Zeros
First, note that since the polynomial has real coefficients and [tex]\( 2i \)[/tex] is a zero, its complex conjugate [tex]\( -2i \)[/tex] must also be a zero. Therefore, the zeros of the polynomial are:
- [tex]\( 3 \)[/tex]
- [tex]\( 2i \)[/tex]
- [tex]\( -2i \)[/tex]
#### 2. Construct the Polynomial from its Zeros
The polynomial can be written in its factored form using its zeros:
[tex]\[ f(x) = a(x - 3)(x - 2i)(x + 2i) \][/tex]
where [tex]\( a \)[/tex] is a real-valued leading coefficient.
#### 3. Simplify the Polynomial
To simplify the polynomial, first multiply the factors involving the complex zeros:
[tex]\[ (x - 2i)(x + 2i) = x^2 - (2i)^2 = x^2 - (-4) = x^2 + 4 \][/tex]
Now, the polynomial becomes:
[tex]\[ f(x) = a(x - 3)(x^2 + 4) \][/tex]
Expand this expression:
[tex]\[ f(x) = a[(x - 3)(x^2 + 4)] = a(x^3 + 4x - 3x^2 - 12) \][/tex]
[tex]\[ f(x) = a(x^3 - 3x^2 + 4x - 12) \][/tex]
#### 4. Determine the Leading Coefficient [tex]\( a \)[/tex]
We know that [tex]\( f(2) = 16 \)[/tex]. Substitute [tex]\( x = 2 \)[/tex] into the expanded polynomial and solve for [tex]\( a \)[/tex]:
[tex]\[ 16 = a(2^3 - 3(2)^2 + 4(2) - 12) \][/tex]
Calculate the values inside the parentheses:
[tex]\[ 2^3 = 8, \quad 3(2^2) = 3(4) = 12, \quad 4(2) = 8, \quad \text{and} \quad -12 = -12 \][/tex]
[tex]\[ f(2) = a(8 - 12 + 8 - 12) = 16 \][/tex]
[tex]\[ 16 = a(-8) = 16 \][/tex]
Thus:
[tex]\[ a = \frac{16}{-8} = -2 \][/tex]
#### 5. Write the Final Polynomial Function
Substitute [tex]\( a = -2 \)[/tex] back into the polynomial function:
[tex]\[ f(x) = -2(x^3 - 3x^2 + 4x - 12) \][/tex]
Distribute [tex]\( -2 \)[/tex]:
[tex]\[ f(x) = -2x^3 + 6x^2 - 8x + 24 \][/tex]
### Final Answer:
[tex]\[ f(x) = -2x^3 + 6x^2 - 8x + 24 \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.