At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's find a cubic (third-degree) polynomial function [tex]\( f(x) \)[/tex] with real coefficients given the following conditions:
1. The polynomial has real coefficients.
2. It has zeros at 3 and [tex]\( 2i \)[/tex] where [tex]\( i \)[/tex] is the imaginary unit.
3. It satisfies the condition [tex]\( f(2) = 16 \)[/tex].
### Step-by-Step Solution:
#### 1. Determine All Zeros
First, note that since the polynomial has real coefficients and [tex]\( 2i \)[/tex] is a zero, its complex conjugate [tex]\( -2i \)[/tex] must also be a zero. Therefore, the zeros of the polynomial are:
- [tex]\( 3 \)[/tex]
- [tex]\( 2i \)[/tex]
- [tex]\( -2i \)[/tex]
#### 2. Construct the Polynomial from its Zeros
The polynomial can be written in its factored form using its zeros:
[tex]\[ f(x) = a(x - 3)(x - 2i)(x + 2i) \][/tex]
where [tex]\( a \)[/tex] is a real-valued leading coefficient.
#### 3. Simplify the Polynomial
To simplify the polynomial, first multiply the factors involving the complex zeros:
[tex]\[ (x - 2i)(x + 2i) = x^2 - (2i)^2 = x^2 - (-4) = x^2 + 4 \][/tex]
Now, the polynomial becomes:
[tex]\[ f(x) = a(x - 3)(x^2 + 4) \][/tex]
Expand this expression:
[tex]\[ f(x) = a[(x - 3)(x^2 + 4)] = a(x^3 + 4x - 3x^2 - 12) \][/tex]
[tex]\[ f(x) = a(x^3 - 3x^2 + 4x - 12) \][/tex]
#### 4. Determine the Leading Coefficient [tex]\( a \)[/tex]
We know that [tex]\( f(2) = 16 \)[/tex]. Substitute [tex]\( x = 2 \)[/tex] into the expanded polynomial and solve for [tex]\( a \)[/tex]:
[tex]\[ 16 = a(2^3 - 3(2)^2 + 4(2) - 12) \][/tex]
Calculate the values inside the parentheses:
[tex]\[ 2^3 = 8, \quad 3(2^2) = 3(4) = 12, \quad 4(2) = 8, \quad \text{and} \quad -12 = -12 \][/tex]
[tex]\[ f(2) = a(8 - 12 + 8 - 12) = 16 \][/tex]
[tex]\[ 16 = a(-8) = 16 \][/tex]
Thus:
[tex]\[ a = \frac{16}{-8} = -2 \][/tex]
#### 5. Write the Final Polynomial Function
Substitute [tex]\( a = -2 \)[/tex] back into the polynomial function:
[tex]\[ f(x) = -2(x^3 - 3x^2 + 4x - 12) \][/tex]
Distribute [tex]\( -2 \)[/tex]:
[tex]\[ f(x) = -2x^3 + 6x^2 - 8x + 24 \][/tex]
### Final Answer:
[tex]\[ f(x) = -2x^3 + 6x^2 - 8x + 24 \][/tex]
1. The polynomial has real coefficients.
2. It has zeros at 3 and [tex]\( 2i \)[/tex] where [tex]\( i \)[/tex] is the imaginary unit.
3. It satisfies the condition [tex]\( f(2) = 16 \)[/tex].
### Step-by-Step Solution:
#### 1. Determine All Zeros
First, note that since the polynomial has real coefficients and [tex]\( 2i \)[/tex] is a zero, its complex conjugate [tex]\( -2i \)[/tex] must also be a zero. Therefore, the zeros of the polynomial are:
- [tex]\( 3 \)[/tex]
- [tex]\( 2i \)[/tex]
- [tex]\( -2i \)[/tex]
#### 2. Construct the Polynomial from its Zeros
The polynomial can be written in its factored form using its zeros:
[tex]\[ f(x) = a(x - 3)(x - 2i)(x + 2i) \][/tex]
where [tex]\( a \)[/tex] is a real-valued leading coefficient.
#### 3. Simplify the Polynomial
To simplify the polynomial, first multiply the factors involving the complex zeros:
[tex]\[ (x - 2i)(x + 2i) = x^2 - (2i)^2 = x^2 - (-4) = x^2 + 4 \][/tex]
Now, the polynomial becomes:
[tex]\[ f(x) = a(x - 3)(x^2 + 4) \][/tex]
Expand this expression:
[tex]\[ f(x) = a[(x - 3)(x^2 + 4)] = a(x^3 + 4x - 3x^2 - 12) \][/tex]
[tex]\[ f(x) = a(x^3 - 3x^2 + 4x - 12) \][/tex]
#### 4. Determine the Leading Coefficient [tex]\( a \)[/tex]
We know that [tex]\( f(2) = 16 \)[/tex]. Substitute [tex]\( x = 2 \)[/tex] into the expanded polynomial and solve for [tex]\( a \)[/tex]:
[tex]\[ 16 = a(2^3 - 3(2)^2 + 4(2) - 12) \][/tex]
Calculate the values inside the parentheses:
[tex]\[ 2^3 = 8, \quad 3(2^2) = 3(4) = 12, \quad 4(2) = 8, \quad \text{and} \quad -12 = -12 \][/tex]
[tex]\[ f(2) = a(8 - 12 + 8 - 12) = 16 \][/tex]
[tex]\[ 16 = a(-8) = 16 \][/tex]
Thus:
[tex]\[ a = \frac{16}{-8} = -2 \][/tex]
#### 5. Write the Final Polynomial Function
Substitute [tex]\( a = -2 \)[/tex] back into the polynomial function:
[tex]\[ f(x) = -2(x^3 - 3x^2 + 4x - 12) \][/tex]
Distribute [tex]\( -2 \)[/tex]:
[tex]\[ f(x) = -2x^3 + 6x^2 - 8x + 24 \][/tex]
### Final Answer:
[tex]\[ f(x) = -2x^3 + 6x^2 - 8x + 24 \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.