Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Find an nth-degree polynomial function with real coefficients satisfying the given conditions.

- [tex]n = 3[/tex]
- [tex]3[/tex] and [tex]2i[/tex] are zeros
- [tex]f(2) = 16[/tex]

[tex]f(x) = \square[/tex]

(Type an expression using [tex]x[/tex] as the variable. Simplify your answer.)


Sagot :

Let's find a cubic (third-degree) polynomial function [tex]\( f(x) \)[/tex] with real coefficients given the following conditions:

1. The polynomial has real coefficients.
2. It has zeros at 3 and [tex]\( 2i \)[/tex] where [tex]\( i \)[/tex] is the imaginary unit.
3. It satisfies the condition [tex]\( f(2) = 16 \)[/tex].

### Step-by-Step Solution:

#### 1. Determine All Zeros
First, note that since the polynomial has real coefficients and [tex]\( 2i \)[/tex] is a zero, its complex conjugate [tex]\( -2i \)[/tex] must also be a zero. Therefore, the zeros of the polynomial are:
- [tex]\( 3 \)[/tex]
- [tex]\( 2i \)[/tex]
- [tex]\( -2i \)[/tex]

#### 2. Construct the Polynomial from its Zeros
The polynomial can be written in its factored form using its zeros:
[tex]\[ f(x) = a(x - 3)(x - 2i)(x + 2i) \][/tex]
where [tex]\( a \)[/tex] is a real-valued leading coefficient.

#### 3. Simplify the Polynomial
To simplify the polynomial, first multiply the factors involving the complex zeros:
[tex]\[ (x - 2i)(x + 2i) = x^2 - (2i)^2 = x^2 - (-4) = x^2 + 4 \][/tex]

Now, the polynomial becomes:
[tex]\[ f(x) = a(x - 3)(x^2 + 4) \][/tex]

Expand this expression:
[tex]\[ f(x) = a[(x - 3)(x^2 + 4)] = a(x^3 + 4x - 3x^2 - 12) \][/tex]
[tex]\[ f(x) = a(x^3 - 3x^2 + 4x - 12) \][/tex]

#### 4. Determine the Leading Coefficient [tex]\( a \)[/tex]
We know that [tex]\( f(2) = 16 \)[/tex]. Substitute [tex]\( x = 2 \)[/tex] into the expanded polynomial and solve for [tex]\( a \)[/tex]:
[tex]\[ 16 = a(2^3 - 3(2)^2 + 4(2) - 12) \][/tex]

Calculate the values inside the parentheses:
[tex]\[ 2^3 = 8, \quad 3(2^2) = 3(4) = 12, \quad 4(2) = 8, \quad \text{and} \quad -12 = -12 \][/tex]
[tex]\[ f(2) = a(8 - 12 + 8 - 12) = 16 \][/tex]
[tex]\[ 16 = a(-8) = 16 \][/tex]
Thus:
[tex]\[ a = \frac{16}{-8} = -2 \][/tex]

#### 5. Write the Final Polynomial Function
Substitute [tex]\( a = -2 \)[/tex] back into the polynomial function:
[tex]\[ f(x) = -2(x^3 - 3x^2 + 4x - 12) \][/tex]

Distribute [tex]\( -2 \)[/tex]:
[tex]\[ f(x) = -2x^3 + 6x^2 - 8x + 24 \][/tex]

### Final Answer:
[tex]\[ f(x) = -2x^3 + 6x^2 - 8x + 24 \][/tex]