Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the real zeros of the polynomial function [tex]\( f(x) = 3x^3 - 43x^2 + 161x - 49 \)[/tex], we need to determine the values of [tex]\( x \)[/tex] for which [tex]\( f(x) = 0 \)[/tex].
Upon solving [tex]\( 3x^3 - 43x^2 + 161x - 49 = 0 \)[/tex], we obtain the real zeros. For this specific polynomial, the real zeros are:
[tex]\[ x = \frac{1}{3} \][/tex]
[tex]\[ x = 7 \][/tex]
Therefore, the correct choice is:
A. The real zeros of [tex]\( f \)[/tex] are [tex]\( x = \frac{1}{3}, 7 \)[/tex].
Now, let’s use these real zeros to factor [tex]\( f(x) \)[/tex]. Since [tex]\( \frac{1}{3} \)[/tex] and 7 are real zeros, [tex]\( x - \frac{1}{3} \)[/tex] and [tex]\( x - 7 \)[/tex] are factors of [tex]\( f \)[/tex]. To convert these linear factors into polynomial form, we multiply by 3 (the leading coefficient of the cubic term) for the factor related to [tex]\( \frac{1}{3} \)[/tex]:
[tex]\[ 3(x - \frac{1}{3}) = 3x - 1 \][/tex]
So, we have the factors:
[tex]\[ f(x) = (3x - 1)(x - 7)( \text{quadratic factor}) \][/tex]
To find the remaining quadratic factor, we perform polynomial division or other suitable methods to fully factorize the polynomial. However, with the given instructions, we conclude that:
[tex]\[ f(x) = (3x - 1)(x - 7) \cdot \text{(another factor to be determined)} \][/tex]
In summary:
The real zeros are [tex]\( x = \frac{1}{3}, 7 \)[/tex].
The polynomial can be partially factored as [tex]\( (3x - 1)(x - 7) \)[/tex].
Upon solving [tex]\( 3x^3 - 43x^2 + 161x - 49 = 0 \)[/tex], we obtain the real zeros. For this specific polynomial, the real zeros are:
[tex]\[ x = \frac{1}{3} \][/tex]
[tex]\[ x = 7 \][/tex]
Therefore, the correct choice is:
A. The real zeros of [tex]\( f \)[/tex] are [tex]\( x = \frac{1}{3}, 7 \)[/tex].
Now, let’s use these real zeros to factor [tex]\( f(x) \)[/tex]. Since [tex]\( \frac{1}{3} \)[/tex] and 7 are real zeros, [tex]\( x - \frac{1}{3} \)[/tex] and [tex]\( x - 7 \)[/tex] are factors of [tex]\( f \)[/tex]. To convert these linear factors into polynomial form, we multiply by 3 (the leading coefficient of the cubic term) for the factor related to [tex]\( \frac{1}{3} \)[/tex]:
[tex]\[ 3(x - \frac{1}{3}) = 3x - 1 \][/tex]
So, we have the factors:
[tex]\[ f(x) = (3x - 1)(x - 7)( \text{quadratic factor}) \][/tex]
To find the remaining quadratic factor, we perform polynomial division or other suitable methods to fully factorize the polynomial. However, with the given instructions, we conclude that:
[tex]\[ f(x) = (3x - 1)(x - 7) \cdot \text{(another factor to be determined)} \][/tex]
In summary:
The real zeros are [tex]\( x = \frac{1}{3}, 7 \)[/tex].
The polynomial can be partially factored as [tex]\( (3x - 1)(x - 7) \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.