Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

For the following, find the real zeros of [tex]f[/tex]. Use the real zeros to factor [tex]f[/tex].

[tex]\ \textless \ br/\ \textgreater \ f(x) = 3x^3 - 43x^2 + 161x - 49\ \textless \ br/\ \textgreater \ [/tex]

1. Find the real zero(s) of [tex]f[/tex]. Select the correct choice below and, if necessary, fill in the answer box to complete your answer.

A. The real zero(s) of [tex]f[/tex] is/are [tex]x = \frac{1}{3}, 7[/tex].
(Simplify your answer. Type an exact answer, using radicals as needed. Use a comma to separate answers as needed. Type each solution only once.)

B. There are no real zeros.

2. Use the real zero(s) to factor [tex]f[/tex].

[tex]\ \textless \ br/\ \textgreater \ f(x) =\ \textless \ br/\ \textgreater \ [/tex]
[tex]\square[/tex] (Factor completely. Type an exact answer, using radicals as needed. Use integers or fractions for any numbers in the expression.)

Sagot :

Let's work through the problem step-by-step to find the real zeros of the polynomial [tex]\(f(x)\)[/tex] and use those zeros to factor [tex]\(f\)[/tex].

Given:
[tex]\[ f(x) = 3x^3 - 43x^2 + 161x - 49 \][/tex]

### Step 1: Find the real zeros of [tex]\(f(x)\)[/tex]
To find the real zeros of the polynomial [tex]\(f(x)\)[/tex], we need to find the values of [tex]\(x\)[/tex] where [tex]\(f(x) = 0\)[/tex].

### Step 2: Solving [tex]\(f(x) = 0\)[/tex]
The real solutions for [tex]\(f(x) = 0\)[/tex] are:
[tex]\[ x = \frac{1}{3} \quad \text{and} \quad x = 7 \][/tex]

Thus, the correct choice for the real zeros is:

A. The real zero(s) of [tex]\(f\)[/tex] is/are [tex]\(x = \frac{1}{3}, 7\)[/tex].

### Step 3: Use the real zeros to factor [tex]\(f\)[/tex]

Given the real zeros [tex]\(x = \frac{1}{3}\)[/tex] and [tex]\(x = 7\)[/tex], we can use these zeros to factor our polynomial.

#### Factoring Process:
- If [tex]\(x = \frac{1}{3}\)[/tex] is a root, then [tex]\((3x - 1)\)[/tex] is a factor.
- If [tex]\(x = 7\)[/tex] is a root, then [tex]\((x - 7)\)[/tex] is a factor.

Since [tex]\(x = 7\)[/tex] is a repeated root, [tex]\((x - 7)\)[/tex] appears twice in the factors of [tex]\(f(x)\)[/tex].

So, the factored form of [tex]\(f(x)\)[/tex] becomes:
[tex]\[ f(x) = (x - 7)^2 (3x - 1) \][/tex]

### Final Answer:
The completely factored form of the polynomial [tex]\(f(x)\)[/tex] is:
[tex]\[ f(x) = (x - 7)^2 (3x - 1) \][/tex]