Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's work through the problem step-by-step to find the real zeros of the polynomial [tex]\(f(x)\)[/tex] and use those zeros to factor [tex]\(f\)[/tex].
Given:
[tex]\[ f(x) = 3x^3 - 43x^2 + 161x - 49 \][/tex]
### Step 1: Find the real zeros of [tex]\(f(x)\)[/tex]
To find the real zeros of the polynomial [tex]\(f(x)\)[/tex], we need to find the values of [tex]\(x\)[/tex] where [tex]\(f(x) = 0\)[/tex].
### Step 2: Solving [tex]\(f(x) = 0\)[/tex]
The real solutions for [tex]\(f(x) = 0\)[/tex] are:
[tex]\[ x = \frac{1}{3} \quad \text{and} \quad x = 7 \][/tex]
Thus, the correct choice for the real zeros is:
A. The real zero(s) of [tex]\(f\)[/tex] is/are [tex]\(x = \frac{1}{3}, 7\)[/tex].
### Step 3: Use the real zeros to factor [tex]\(f\)[/tex]
Given the real zeros [tex]\(x = \frac{1}{3}\)[/tex] and [tex]\(x = 7\)[/tex], we can use these zeros to factor our polynomial.
#### Factoring Process:
- If [tex]\(x = \frac{1}{3}\)[/tex] is a root, then [tex]\((3x - 1)\)[/tex] is a factor.
- If [tex]\(x = 7\)[/tex] is a root, then [tex]\((x - 7)\)[/tex] is a factor.
Since [tex]\(x = 7\)[/tex] is a repeated root, [tex]\((x - 7)\)[/tex] appears twice in the factors of [tex]\(f(x)\)[/tex].
So, the factored form of [tex]\(f(x)\)[/tex] becomes:
[tex]\[ f(x) = (x - 7)^2 (3x - 1) \][/tex]
### Final Answer:
The completely factored form of the polynomial [tex]\(f(x)\)[/tex] is:
[tex]\[ f(x) = (x - 7)^2 (3x - 1) \][/tex]
Given:
[tex]\[ f(x) = 3x^3 - 43x^2 + 161x - 49 \][/tex]
### Step 1: Find the real zeros of [tex]\(f(x)\)[/tex]
To find the real zeros of the polynomial [tex]\(f(x)\)[/tex], we need to find the values of [tex]\(x\)[/tex] where [tex]\(f(x) = 0\)[/tex].
### Step 2: Solving [tex]\(f(x) = 0\)[/tex]
The real solutions for [tex]\(f(x) = 0\)[/tex] are:
[tex]\[ x = \frac{1}{3} \quad \text{and} \quad x = 7 \][/tex]
Thus, the correct choice for the real zeros is:
A. The real zero(s) of [tex]\(f\)[/tex] is/are [tex]\(x = \frac{1}{3}, 7\)[/tex].
### Step 3: Use the real zeros to factor [tex]\(f\)[/tex]
Given the real zeros [tex]\(x = \frac{1}{3}\)[/tex] and [tex]\(x = 7\)[/tex], we can use these zeros to factor our polynomial.
#### Factoring Process:
- If [tex]\(x = \frac{1}{3}\)[/tex] is a root, then [tex]\((3x - 1)\)[/tex] is a factor.
- If [tex]\(x = 7\)[/tex] is a root, then [tex]\((x - 7)\)[/tex] is a factor.
Since [tex]\(x = 7\)[/tex] is a repeated root, [tex]\((x - 7)\)[/tex] appears twice in the factors of [tex]\(f(x)\)[/tex].
So, the factored form of [tex]\(f(x)\)[/tex] becomes:
[tex]\[ f(x) = (x - 7)^2 (3x - 1) \][/tex]
### Final Answer:
The completely factored form of the polynomial [tex]\(f(x)\)[/tex] is:
[tex]\[ f(x) = (x - 7)^2 (3x - 1) \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.