Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
First, let's find the real zeros of the polynomial function [tex]\( f(x) = 7x^4 + 6x^3 - 78x^2 - 66x + 11 \)[/tex].
The real zeros of the polynomial [tex]\( f \)[/tex] are the values of [tex]\( x \)[/tex] that make the equation [tex]\( f(x) = 0 \)[/tex] true. Based on the calculations and simplifications:
The real zeros of [tex]\( f \)[/tex] are:
[tex]\[ x = -\sqrt{11}, -1, \sqrt{11}, \frac{1}{7} \][/tex]
So the correct choice is:
A. The real zero(s) of [tex]\( f \)[/tex] is/are [tex]\(-\sqrt{11}, -1, \sqrt{11}, \frac{1}{7}\)[/tex].
Next, we use these real zeros to factor the polynomial [tex]\( f \)[/tex]. The zeros tell us the factors of [tex]\( f(x) \)[/tex] in the form:
[tex]\[ (x + \sqrt{11})(x - \sqrt{11})(x + 1)\left(x - \frac{1}{7}\right) \][/tex]
We can combine [tex]\( (x + \sqrt{11})(x - \sqrt{11}) \)[/tex] into [tex]\( (x^2 - 11) \)[/tex], and [tex]\( \left(x - \frac{1}{7}\right) \)[/tex] can be rewritten as [tex]\( (7x - 1) \)[/tex] to match the polynomials' degrees and simplify:
The fully factored form of [tex]\( f(x) \)[/tex] is:
[tex]\[ f(x) = (x + 1)(7x - 1)(x^2 - 11) \][/tex]
The real zeros of the polynomial [tex]\( f \)[/tex] are the values of [tex]\( x \)[/tex] that make the equation [tex]\( f(x) = 0 \)[/tex] true. Based on the calculations and simplifications:
The real zeros of [tex]\( f \)[/tex] are:
[tex]\[ x = -\sqrt{11}, -1, \sqrt{11}, \frac{1}{7} \][/tex]
So the correct choice is:
A. The real zero(s) of [tex]\( f \)[/tex] is/are [tex]\(-\sqrt{11}, -1, \sqrt{11}, \frac{1}{7}\)[/tex].
Next, we use these real zeros to factor the polynomial [tex]\( f \)[/tex]. The zeros tell us the factors of [tex]\( f(x) \)[/tex] in the form:
[tex]\[ (x + \sqrt{11})(x - \sqrt{11})(x + 1)\left(x - \frac{1}{7}\right) \][/tex]
We can combine [tex]\( (x + \sqrt{11})(x - \sqrt{11}) \)[/tex] into [tex]\( (x^2 - 11) \)[/tex], and [tex]\( \left(x - \frac{1}{7}\right) \)[/tex] can be rewritten as [tex]\( (7x - 1) \)[/tex] to match the polynomials' degrees and simplify:
The fully factored form of [tex]\( f(x) \)[/tex] is:
[tex]\[ f(x) = (x + 1)(7x - 1)(x^2 - 11) \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.