At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the quadratic equation [tex]\( x^2 + 10x + 21 = 0 \)[/tex], we can use the factorization method.
Step-by-Step Solution:
1. Write down the quadratic equation:
[tex]\[ x^2 + 10x + 21 = 0 \][/tex]
2. Factorize the quadratic expression:
To factor the quadratic expression, we look for two numbers that multiply to the constant term (21) and add up to the linear coefficient (10).
3. Find the factors of 21 that add up to 10:
- The factors of 21 are (1, 21), (3, 7), and their respective negative pairs.
- We need the pair that adds up to 10:
[tex]\[ 3 + 7 = 10 \][/tex]
Therefore, the numbers are 3 and 7.
4. Write the quadratic expression as a product of binomials:
[tex]\[ x^2 + 10x + 21 = (x + 3)(x + 7) \][/tex]
5. Set each factor equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ (x + 3)(x + 7) = 0 \][/tex]
This gives us two equations:
[tex]\[ x + 3 = 0 \quad \text{or} \quad x + 7 = 0 \][/tex]
6. Solve each equation for [tex]\( x \)[/tex]:
[tex]\[ x + 3 = 0 \implies x = -3 \][/tex]
[tex]\[ x + 7 = 0 \implies x = -7 \][/tex]
So, the solutions to the quadratic equation [tex]\( x^2 + 10x + 21 = 0 \)[/tex] are [tex]\( x = -3 \)[/tex] and [tex]\( x = -7 \)[/tex].
Answer:
A. [tex]\( x = -3 \)[/tex]; [tex]\( x = -7 \)[/tex]
Step-by-Step Solution:
1. Write down the quadratic equation:
[tex]\[ x^2 + 10x + 21 = 0 \][/tex]
2. Factorize the quadratic expression:
To factor the quadratic expression, we look for two numbers that multiply to the constant term (21) and add up to the linear coefficient (10).
3. Find the factors of 21 that add up to 10:
- The factors of 21 are (1, 21), (3, 7), and their respective negative pairs.
- We need the pair that adds up to 10:
[tex]\[ 3 + 7 = 10 \][/tex]
Therefore, the numbers are 3 and 7.
4. Write the quadratic expression as a product of binomials:
[tex]\[ x^2 + 10x + 21 = (x + 3)(x + 7) \][/tex]
5. Set each factor equal to zero and solve for [tex]\( x \)[/tex]:
[tex]\[ (x + 3)(x + 7) = 0 \][/tex]
This gives us two equations:
[tex]\[ x + 3 = 0 \quad \text{or} \quad x + 7 = 0 \][/tex]
6. Solve each equation for [tex]\( x \)[/tex]:
[tex]\[ x + 3 = 0 \implies x = -3 \][/tex]
[tex]\[ x + 7 = 0 \implies x = -7 \][/tex]
So, the solutions to the quadratic equation [tex]\( x^2 + 10x + 21 = 0 \)[/tex] are [tex]\( x = -3 \)[/tex] and [tex]\( x = -7 \)[/tex].
Answer:
A. [tex]\( x = -3 \)[/tex]; [tex]\( x = -7 \)[/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.