Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the range of the function [tex]\( m(x) = 30x + 5,000 \)[/tex], let's analyze the function step by step.
1. Understanding the Function:
- The given function [tex]\( m(x) = 30x + 5,000 \)[/tex] represents the total mileage on the car.
- Here, [tex]\( m(x) \)[/tex] is the total mileage and [tex]\( x \)[/tex] is the number of gallons of gas consumed.
2. Interpretation of the Function:
- When [tex]\( x = 0 \)[/tex], the initial mileage of the car is given by [tex]\( m(0) \)[/tex]:
[tex]\[ m(0) = 30 \cdot 0 + 5,000 = 5,000 \][/tex]
So, the car starts with 5,000 miles.
- As [tex]\( x \)[/tex] increases (i.e., more gas is consumed), the mileage [tex]\( m(x) \)[/tex] will also increase because [tex]\( 30x \)[/tex] is a positive term.
3. Identifying the Range:
- Because the function [tex]\( m(x) = 30x + 5,000 \)[/tex] is linear with a positive slope (30), it means that as [tex]\( x \)[/tex] increases from 0 to positive infinity, [tex]\( m(x) \)[/tex] will increase from 5,000 to positive infinity.
- The lowest value of [tex]\( m(x) \)[/tex] occurs at [tex]\( x = 0 \)[/tex], which is 5,000.
Thus, the set of all possible values of [tex]\( m(x) \)[/tex] starts from 5,000 and increases indefinitely. This means that the range of the function can be expressed as:
[tex]\[ [5,000, \infty) \][/tex]
Therefore, the correct answer is:
[tex]\[ [5,000, \infty) \][/tex]
1. Understanding the Function:
- The given function [tex]\( m(x) = 30x + 5,000 \)[/tex] represents the total mileage on the car.
- Here, [tex]\( m(x) \)[/tex] is the total mileage and [tex]\( x \)[/tex] is the number of gallons of gas consumed.
2. Interpretation of the Function:
- When [tex]\( x = 0 \)[/tex], the initial mileage of the car is given by [tex]\( m(0) \)[/tex]:
[tex]\[ m(0) = 30 \cdot 0 + 5,000 = 5,000 \][/tex]
So, the car starts with 5,000 miles.
- As [tex]\( x \)[/tex] increases (i.e., more gas is consumed), the mileage [tex]\( m(x) \)[/tex] will also increase because [tex]\( 30x \)[/tex] is a positive term.
3. Identifying the Range:
- Because the function [tex]\( m(x) = 30x + 5,000 \)[/tex] is linear with a positive slope (30), it means that as [tex]\( x \)[/tex] increases from 0 to positive infinity, [tex]\( m(x) \)[/tex] will increase from 5,000 to positive infinity.
- The lowest value of [tex]\( m(x) \)[/tex] occurs at [tex]\( x = 0 \)[/tex], which is 5,000.
Thus, the set of all possible values of [tex]\( m(x) \)[/tex] starts from 5,000 and increases indefinitely. This means that the range of the function can be expressed as:
[tex]\[ [5,000, \infty) \][/tex]
Therefore, the correct answer is:
[tex]\[ [5,000, \infty) \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.