Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which museum's entrance fee is proportional to the number of visitors, we need to check if the ratio of the fee to the number of visitors is constant for each museum. Let's examine each museum one by one.
Museum A:
- For 2 visitors, the fee is \[tex]$4. The ratio is \( \frac{4}{2} = 2 \). - For 3 visitors, the fee is \$[/tex]5. The ratio is [tex]\( \frac{5}{3} \approx 1.67 \)[/tex].
- For 4 visitors, the fee is \[tex]$6. The ratio is \( \frac{6}{4} = 1.5 \). Since the ratio of fee per visitor is not constant (2, 1.67, 1.5), the entrance fee at Museum A is not proportional to the number of visitors. Museum B: - For 1 visitor, the fee is \$[/tex]2. The ratio is [tex]\( \frac{2}{1} = 2 \)[/tex].
- For 4 visitors, the fee is \[tex]$8. The ratio is \( \frac{8}{4} = 2 \). - For 6 visitors, the fee is \$[/tex]11. The ratio is [tex]\( \frac{11}{6} \approx 1.83 \)[/tex].
Since the ratio of fee per visitor is not constant (2, 2, 1.83), the entrance fee at Museum B is not proportional to the number of visitors.
Museum C:
- For 3 visitors, the fee is \[tex]$4. The ratio is \( \frac{4}{3} \approx 1.33 \). - For 12 visitors, the fee is \$[/tex]16. The ratio is [tex]\( \frac{16}{12} = \frac{4}{3} \approx 1.33 \)[/tex].
- For 18 visitors, the fee is \$24. The ratio is [tex]\( \frac{24}{18} = \frac{4}{3} \approx 1.33 \)[/tex].
Since the ratio of fee per visitor is constant ([tex]\(\frac{4}{3}\)[/tex]), the entrance fee at Museum C is proportional to the number of visitors.
Therefore, the correct answer is:
C. museum C
Museum A:
- For 2 visitors, the fee is \[tex]$4. The ratio is \( \frac{4}{2} = 2 \). - For 3 visitors, the fee is \$[/tex]5. The ratio is [tex]\( \frac{5}{3} \approx 1.67 \)[/tex].
- For 4 visitors, the fee is \[tex]$6. The ratio is \( \frac{6}{4} = 1.5 \). Since the ratio of fee per visitor is not constant (2, 1.67, 1.5), the entrance fee at Museum A is not proportional to the number of visitors. Museum B: - For 1 visitor, the fee is \$[/tex]2. The ratio is [tex]\( \frac{2}{1} = 2 \)[/tex].
- For 4 visitors, the fee is \[tex]$8. The ratio is \( \frac{8}{4} = 2 \). - For 6 visitors, the fee is \$[/tex]11. The ratio is [tex]\( \frac{11}{6} \approx 1.83 \)[/tex].
Since the ratio of fee per visitor is not constant (2, 2, 1.83), the entrance fee at Museum B is not proportional to the number of visitors.
Museum C:
- For 3 visitors, the fee is \[tex]$4. The ratio is \( \frac{4}{3} \approx 1.33 \). - For 12 visitors, the fee is \$[/tex]16. The ratio is [tex]\( \frac{16}{12} = \frac{4}{3} \approx 1.33 \)[/tex].
- For 18 visitors, the fee is \$24. The ratio is [tex]\( \frac{24}{18} = \frac{4}{3} \approx 1.33 \)[/tex].
Since the ratio of fee per visitor is constant ([tex]\(\frac{4}{3}\)[/tex]), the entrance fee at Museum C is proportional to the number of visitors.
Therefore, the correct answer is:
C. museum C
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.