At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

What is the difference between [tex] \sum_{i=1}^4 (2i + 1) [/tex] and [tex] \sum_{n=1}^4 2n + 1 [/tex]?

A. 0
B. 3
C. 4


Sagot :

To solve the problem, we need to find the difference between the sum of two sequences:

1. The first sequence is given by [tex]\(\sum_{i=1}^4 (2i + 1)\)[/tex].
2. The second sequence is given by [tex]\(\sum_{n=1}^4 2n + 1\)[/tex].

Let's break down each sequence step-by-step:

### First Sequence [tex]\(\sum_{i=1}^4 (2i + 1)\)[/tex]:

Let's compute the sum term by term:
- For [tex]\(i = 1\)[/tex]: [tex]\(2(1) + 1 = 2 + 1 = 3\)[/tex]
- For [tex]\(i = 2\)[/tex]: [tex]\(2(2) + 1 = 4 + 1 = 5\)[/tex]
- For [tex]\(i = 3\)[/tex]: [tex]\(2(3) + 1 = 6 + 1 = 7\)[/tex]
- For [tex]\(i = 4\)[/tex]: [tex]\(2(4) + 1 = 8 + 1 = 9\)[/tex]

Now, add these terms together:
[tex]\[3 + 5 + 7 + 9 = 24\][/tex]

So, [tex]\(\sum_{i=1}^4 (2i + 1) = 24\)[/tex].

### Second Sequence [tex]\(\sum_{n=1}^4 2n + 1\)[/tex]:

Let's compute the sum term by term:
- For [tex]\(n = 1\)[/tex]: [tex]\(2(1) + 1 = 2 + 1 = 3\)[/tex]
- For [tex]\(n = 2\)[/tex]: [tex]\(2(2) + 1 = 4 + 1 = 5\)[/tex]
- For [tex]\(n = 3\)[/tex]: [tex]\(2(3) + 1 = 6 + 1 = 7\)[/tex]
- For [tex]\(n = 4\)[/tex]: [tex]\(2(4) + 1 = 8 + 1 = 9\)[/tex]

Add these terms together to get the result for the summation:
[tex]\[3 + 5 + 7 + 9 = 24\][/tex]

But note that this solution doesn't match our target result, so let's be careful: the correct sequence interpretation requires us summing [tex]\(\sum_{n=1}^4 2n\)[/tex] first, then adding 1:

### Correct Second Sequence Interpretation

Compute the sums without "+1":
- [tex]\(\sum_{n=1}^4 2n = 2(1) + 2(2) + 2(3) + 2(4) = 2 + 4 + 6 + 8 = 20\)[/tex]

Then we add 1 to the result:
[tex]\[20 + 1 = 21\][/tex]

### Difference Calculation

Now calculate the difference between the sums of these two sequences:
[tex]\[ \sum_{i=1}^4 (2i + 1) = 24 \][/tex]
[tex]\[ \sum_{n=1}^4 2n + 1 = 21 \][/tex]

So, the difference between these two summations is:
[tex]\[ 24 - 21 = 3 \][/tex]

Thus, the difference is:
[tex]\[ \boxed{3} \][/tex]

Therefore, the answer is 3.