Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Find the exponential function that models the data in the table below.

[tex]\[
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline $x$ & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\
\hline $y$ & $\frac{3}{64}$ & $\frac{3}{16}$ & $\frac{3}{4}$ & 3 & 12 & 48 & 192 & 768 \\
\hline
\end{tabular}
\][/tex]

What is the exponential regression of the data?

Sagot :

To derive the exponential function that best fits the given data, we can follow these steps:

1. Transform the Exponential Relationship to a Linear One:
Given the exponential model [tex]\( y = ab^x \)[/tex], we take the natural logarithm of both sides to linearize it:
[tex]\[ \ln(y) = \ln(a) + x \ln(b) \][/tex]
Here, we let [tex]\( Y = \ln(y) \)[/tex], [tex]\( A = \ln(a) \)[/tex], and [tex]\( B = \ln(b) \)[/tex]:
[tex]\[ Y = A + Bx \][/tex]
This equation represents a linear relationship between [tex]\( Y \)[/tex] and [tex]\( x \)[/tex].

2. Construct the Transformed Dataset:
Using the given data, we compute [tex]\( Y \)[/tex] as [tex]\( \ln(y) \)[/tex]:
[tex]\[ x: -3, \quad y: \frac{3}{64} \quad \Rightarrow \quad \ln\left(\frac{3}{64}\right) \][/tex]
[tex]\[ x: -2, \quad y: \frac{3}{16} \quad \Rightarrow \quad \ln\left(\frac{3}{16}\right) \][/tex]
[tex]\[ x: -1, \quad y: \frac{3}{4} \quad \Rightarrow \quad \ln\left(\frac{3}{4}\right) \][/tex]
[tex]\[ x: 0, \quad y: 3 \quad \Rightarrow \quad \ln(3) \][/tex]
[tex]\[ x: 1, \quad y: 12 \quad \Rightarrow \quad \ln(12) \][/tex]
[tex]\[ x: 2, \quad y: 48 \quad \Rightarrow \quad \ln(48) \][/tex]
[tex]\[ x: 3, \quad y: 192 \quad \Rightarrow \quad \ln(192) \][/tex]
[tex]\[ x: 4, \quad y: 768 \quad \Rightarrow \quad \ln(768) \][/tex]

3. Perform Linear Regression on the Transformed Data:
We fit the transformed data [tex]\((x, \ln(y))\)[/tex] to the linear model [tex]\( Y = A + Bx \)[/tex] to find the coefficients [tex]\( A \)[/tex] and [tex]\( B \)[/tex].

4. Interpret the Regression Coefficients:
After fitting the linear model, we obtain the coefficients:
[tex]\[ A = 1.09861229, \quad B = 1.38629436 \][/tex]
To revert to the exponential form, we need to transform the coefficients back:
[tex]\[ a = e^A = e^{1.09861229} \approx 3.0000000000000004 \][/tex]
[tex]\[ b = e^B = e^{1.38629436} \approx 4.000000000000003 \][/tex]

Therefore, the exponential function that models the given data is:

[tex]\[ y = 3 \cdot 4^x \][/tex]