Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Find the exponential function that models the data in the table below.

[tex]\[
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline $x$ & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\
\hline $y$ & $\frac{3}{64}$ & $\frac{3}{16}$ & $\frac{3}{4}$ & 3 & 12 & 48 & 192 & 768 \\
\hline
\end{tabular}
\][/tex]

What is the exponential regression of the data?


Sagot :

To derive the exponential function that best fits the given data, we can follow these steps:

1. Transform the Exponential Relationship to a Linear One:
Given the exponential model [tex]\( y = ab^x \)[/tex], we take the natural logarithm of both sides to linearize it:
[tex]\[ \ln(y) = \ln(a) + x \ln(b) \][/tex]
Here, we let [tex]\( Y = \ln(y) \)[/tex], [tex]\( A = \ln(a) \)[/tex], and [tex]\( B = \ln(b) \)[/tex]:
[tex]\[ Y = A + Bx \][/tex]
This equation represents a linear relationship between [tex]\( Y \)[/tex] and [tex]\( x \)[/tex].

2. Construct the Transformed Dataset:
Using the given data, we compute [tex]\( Y \)[/tex] as [tex]\( \ln(y) \)[/tex]:
[tex]\[ x: -3, \quad y: \frac{3}{64} \quad \Rightarrow \quad \ln\left(\frac{3}{64}\right) \][/tex]
[tex]\[ x: -2, \quad y: \frac{3}{16} \quad \Rightarrow \quad \ln\left(\frac{3}{16}\right) \][/tex]
[tex]\[ x: -1, \quad y: \frac{3}{4} \quad \Rightarrow \quad \ln\left(\frac{3}{4}\right) \][/tex]
[tex]\[ x: 0, \quad y: 3 \quad \Rightarrow \quad \ln(3) \][/tex]
[tex]\[ x: 1, \quad y: 12 \quad \Rightarrow \quad \ln(12) \][/tex]
[tex]\[ x: 2, \quad y: 48 \quad \Rightarrow \quad \ln(48) \][/tex]
[tex]\[ x: 3, \quad y: 192 \quad \Rightarrow \quad \ln(192) \][/tex]
[tex]\[ x: 4, \quad y: 768 \quad \Rightarrow \quad \ln(768) \][/tex]

3. Perform Linear Regression on the Transformed Data:
We fit the transformed data [tex]\((x, \ln(y))\)[/tex] to the linear model [tex]\( Y = A + Bx \)[/tex] to find the coefficients [tex]\( A \)[/tex] and [tex]\( B \)[/tex].

4. Interpret the Regression Coefficients:
After fitting the linear model, we obtain the coefficients:
[tex]\[ A = 1.09861229, \quad B = 1.38629436 \][/tex]
To revert to the exponential form, we need to transform the coefficients back:
[tex]\[ a = e^A = e^{1.09861229} \approx 3.0000000000000004 \][/tex]
[tex]\[ b = e^B = e^{1.38629436} \approx 4.000000000000003 \][/tex]

Therefore, the exponential function that models the given data is:

[tex]\[ y = 3 \cdot 4^x \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.