Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To derive the exponential function that best fits the given data, we can follow these steps:
1. Transform the Exponential Relationship to a Linear One:
Given the exponential model [tex]\( y = ab^x \)[/tex], we take the natural logarithm of both sides to linearize it:
[tex]\[ \ln(y) = \ln(a) + x \ln(b) \][/tex]
Here, we let [tex]\( Y = \ln(y) \)[/tex], [tex]\( A = \ln(a) \)[/tex], and [tex]\( B = \ln(b) \)[/tex]:
[tex]\[ Y = A + Bx \][/tex]
This equation represents a linear relationship between [tex]\( Y \)[/tex] and [tex]\( x \)[/tex].
2. Construct the Transformed Dataset:
Using the given data, we compute [tex]\( Y \)[/tex] as [tex]\( \ln(y) \)[/tex]:
[tex]\[ x: -3, \quad y: \frac{3}{64} \quad \Rightarrow \quad \ln\left(\frac{3}{64}\right) \][/tex]
[tex]\[ x: -2, \quad y: \frac{3}{16} \quad \Rightarrow \quad \ln\left(\frac{3}{16}\right) \][/tex]
[tex]\[ x: -1, \quad y: \frac{3}{4} \quad \Rightarrow \quad \ln\left(\frac{3}{4}\right) \][/tex]
[tex]\[ x: 0, \quad y: 3 \quad \Rightarrow \quad \ln(3) \][/tex]
[tex]\[ x: 1, \quad y: 12 \quad \Rightarrow \quad \ln(12) \][/tex]
[tex]\[ x: 2, \quad y: 48 \quad \Rightarrow \quad \ln(48) \][/tex]
[tex]\[ x: 3, \quad y: 192 \quad \Rightarrow \quad \ln(192) \][/tex]
[tex]\[ x: 4, \quad y: 768 \quad \Rightarrow \quad \ln(768) \][/tex]
3. Perform Linear Regression on the Transformed Data:
We fit the transformed data [tex]\((x, \ln(y))\)[/tex] to the linear model [tex]\( Y = A + Bx \)[/tex] to find the coefficients [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
4. Interpret the Regression Coefficients:
After fitting the linear model, we obtain the coefficients:
[tex]\[ A = 1.09861229, \quad B = 1.38629436 \][/tex]
To revert to the exponential form, we need to transform the coefficients back:
[tex]\[ a = e^A = e^{1.09861229} \approx 3.0000000000000004 \][/tex]
[tex]\[ b = e^B = e^{1.38629436} \approx 4.000000000000003 \][/tex]
Therefore, the exponential function that models the given data is:
[tex]\[ y = 3 \cdot 4^x \][/tex]
1. Transform the Exponential Relationship to a Linear One:
Given the exponential model [tex]\( y = ab^x \)[/tex], we take the natural logarithm of both sides to linearize it:
[tex]\[ \ln(y) = \ln(a) + x \ln(b) \][/tex]
Here, we let [tex]\( Y = \ln(y) \)[/tex], [tex]\( A = \ln(a) \)[/tex], and [tex]\( B = \ln(b) \)[/tex]:
[tex]\[ Y = A + Bx \][/tex]
This equation represents a linear relationship between [tex]\( Y \)[/tex] and [tex]\( x \)[/tex].
2. Construct the Transformed Dataset:
Using the given data, we compute [tex]\( Y \)[/tex] as [tex]\( \ln(y) \)[/tex]:
[tex]\[ x: -3, \quad y: \frac{3}{64} \quad \Rightarrow \quad \ln\left(\frac{3}{64}\right) \][/tex]
[tex]\[ x: -2, \quad y: \frac{3}{16} \quad \Rightarrow \quad \ln\left(\frac{3}{16}\right) \][/tex]
[tex]\[ x: -1, \quad y: \frac{3}{4} \quad \Rightarrow \quad \ln\left(\frac{3}{4}\right) \][/tex]
[tex]\[ x: 0, \quad y: 3 \quad \Rightarrow \quad \ln(3) \][/tex]
[tex]\[ x: 1, \quad y: 12 \quad \Rightarrow \quad \ln(12) \][/tex]
[tex]\[ x: 2, \quad y: 48 \quad \Rightarrow \quad \ln(48) \][/tex]
[tex]\[ x: 3, \quad y: 192 \quad \Rightarrow \quad \ln(192) \][/tex]
[tex]\[ x: 4, \quad y: 768 \quad \Rightarrow \quad \ln(768) \][/tex]
3. Perform Linear Regression on the Transformed Data:
We fit the transformed data [tex]\((x, \ln(y))\)[/tex] to the linear model [tex]\( Y = A + Bx \)[/tex] to find the coefficients [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
4. Interpret the Regression Coefficients:
After fitting the linear model, we obtain the coefficients:
[tex]\[ A = 1.09861229, \quad B = 1.38629436 \][/tex]
To revert to the exponential form, we need to transform the coefficients back:
[tex]\[ a = e^A = e^{1.09861229} \approx 3.0000000000000004 \][/tex]
[tex]\[ b = e^B = e^{1.38629436} \approx 4.000000000000003 \][/tex]
Therefore, the exponential function that models the given data is:
[tex]\[ y = 3 \cdot 4^x \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.