At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let’s complete the following polynomial expression:
[tex]\[ x^2 + \frac{1}{2}x - 4 \][/tex]
### Step-by-Step Solution:
1. Identify the polynomial's general form.
The given expression [tex]\( x^2 + \frac{1}{2}x - 4 \)[/tex] is a quadratic polynomial of the form [tex]\( ax^2 + bx + c \)[/tex], where:
[tex]\[ a = 1, \quad b = \frac{1}{2}, \quad c = -4 \][/tex]
2. Verify by rewriting the polynomial.
To ensure clarity, let's rewrite the polynomial in its standard form:
[tex]\[ x^2 + 0.5x - 4 \][/tex]
3. Understanding the structure:
- The quadratic term is [tex]\( x^2 \)[/tex]
- The linear term is [tex]\( 0.5x \)[/tex]
- The constant term is [tex]\(-4\)[/tex]
This is the complete form of the quadratic polynomial. We have now verified the structure of the polynomial, and it is given that
[tex]\[ \boxed{x^2 + 0.5x - 4} \][/tex]
This completes interpreting the given polynomial and ensuring its correctness.
[tex]\[ x^2 + \frac{1}{2}x - 4 \][/tex]
### Step-by-Step Solution:
1. Identify the polynomial's general form.
The given expression [tex]\( x^2 + \frac{1}{2}x - 4 \)[/tex] is a quadratic polynomial of the form [tex]\( ax^2 + bx + c \)[/tex], where:
[tex]\[ a = 1, \quad b = \frac{1}{2}, \quad c = -4 \][/tex]
2. Verify by rewriting the polynomial.
To ensure clarity, let's rewrite the polynomial in its standard form:
[tex]\[ x^2 + 0.5x - 4 \][/tex]
3. Understanding the structure:
- The quadratic term is [tex]\( x^2 \)[/tex]
- The linear term is [tex]\( 0.5x \)[/tex]
- The constant term is [tex]\(-4\)[/tex]
This is the complete form of the quadratic polynomial. We have now verified the structure of the polynomial, and it is given that
[tex]\[ \boxed{x^2 + 0.5x - 4} \][/tex]
This completes interpreting the given polynomial and ensuring its correctness.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.