At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Use the table below to answer the following questions:

\begin{tabular}{|r|r|r|r|r|r|}
\hline
\# of Children & 0 & 1 & 2 & 3 or more & Total \\
\hline
From the U.S & 8 & 15 & 5 & 6 & 34 \\
\hline
From outside the U.S & 7 & 10 & 11 & 13 & 41 \\
\hline
Total & 15 & 25 & 16 & 19 & 75 \\
\hline
\end{tabular}

1. What is the probability that someone is from the U.S? [tex]$\square$[/tex]

2. What is the probability that someone has at least 2 children? [tex]$\square$[/tex]

3. What is the probability that someone is from the U.S and has one child? [tex]$\square$[/tex]

Sagot :

Certainly! Let's go through each of these questions step-by-step using the data provided in the table to determine the probabilities.

### 1. Probability that someone is from the U.S.

The total number of people surveyed is [tex]\(75\)[/tex]. Out of these, [tex]\(34\)[/tex] are from the U.S.

The probability [tex]\(P(\text{from the U.S})\)[/tex] can be calculated as:
[tex]\[ P(\text{from the U.S}) = \frac{\text{Number of people from the U.S}}{\text{Total number of people}} = \frac{34}{75} \][/tex]

Simplifying this fraction gives:
[tex]\[ P(\text{from the U.S}) \approx 0.4533 \][/tex]

### 2. Probability that someone has at least 2 children.

Let's first calculate the total number of people who have at least 2 children. This includes those with [tex]\(2\)[/tex] children and those with [tex]\(3\)[/tex] or more children.

From the table:
- Number of people with [tex]\(2\)[/tex] children: [tex]\(16\)[/tex]
- Number of people with [tex]\(3\)[/tex] or more children: [tex]\(19\)[/tex]

Summing these gives the total number of people with at least 2 children:
[tex]\[ 16 + 19 = 35 \][/tex]

The probability [tex]\(P(\text{at least 2 children})\)[/tex] can be calculated as:
[tex]\[ P(\text{at least 2 children}) = \frac{\text{Number of people with at least 2 children}}{\text{Total number of people}} = \frac{35}{75} \][/tex]

Simplifying this fraction gives:
[tex]\[ P(\text{at least 2 children}) \approx 0.4667 \][/tex]

### 3. Probability that someone is from the U.S. and has one child.

From the table, the number of people from the U.S. who have one child is [tex]\(15\)[/tex].

The probability [tex]\(P(\text{from the U.S. and has one child})\)[/tex] can be calculated as:
[tex]\[ P(\text{from the U.S. and has one child}) = \frac{\text{Number of U.S. people with one child}}{\text{Total number of people}} = \frac{15}{75} \][/tex]

Simplifying this fraction gives:
[tex]\[ P(\text{from the U.S. and has one child}) = 0.2 \][/tex]

### Summary of Probabilities:
1. The probability that someone is from the U.S. is approximately [tex]\(0.4533\)[/tex].
2. The probability that someone has at least 2 children is approximately [tex]\(0.4667\)[/tex].
3. The probability that someone is from the U.S. and has one child is [tex]\(0.2\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.