Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the equation of the quadratic function in vertex form [tex]\( f(x) = a(x-h)^2 + k \)[/tex], we follow these steps:
1. Identify the vertex ([tex]\(h\)[/tex], [tex]\(k\)[/tex]):
The vertex of the function is at the point where the function reaches its maximum or minimum value. From the given table, we see that the function reaches its maximum value at [tex]\(x = 8\)[/tex] with [tex]\(f(x) = 6\)[/tex]. Therefore, the vertex is [tex]\( (h, k) = (8, 6) \)[/tex].
2. Substitute the vertex into the vertex form equation:
The equation now looks like [tex]\( f(x) = a(x-8)^2 + 6 \)[/tex].
3. Determine the value of [tex]\(a\)[/tex]:
To find the value of [tex]\(a\)[/tex], use another point from the table. Let's use the point [tex]\((6, -2)\)[/tex].
Substitute [tex]\( x = 6 \)[/tex] and [tex]\( f(x) = -2 \)[/tex] into the equation:
[tex]\[ -2 = a(6 - 8)^2 + 6 \][/tex]
4. Solve for [tex]\(a\)[/tex]:
[tex]\[ -2 = a(-2)^2 + 6 \][/tex]
[tex]\[ -2 = 4a + 6 \][/tex]
Subtract 6 from both sides:
[tex]\[ -2 - 6 = 4a \][/tex]
[tex]\[ -8 = 4a \][/tex]
Divide both sides by 4:
[tex]\[ a = -2 \][/tex]
5. Write the final equation:
Substitute [tex]\(a = -2\)[/tex], [tex]\(h = 8\)[/tex], and [tex]\(k = 6\)[/tex] into the vertex form equation:
[tex]\[ f(x) = -2(x-8)^2 + 6 \][/tex]
So, the equation of the function in vertex form is:
[tex]\[ f(x) = -2(x-8)^2 + 6 \][/tex]
1. Identify the vertex ([tex]\(h\)[/tex], [tex]\(k\)[/tex]):
The vertex of the function is at the point where the function reaches its maximum or minimum value. From the given table, we see that the function reaches its maximum value at [tex]\(x = 8\)[/tex] with [tex]\(f(x) = 6\)[/tex]. Therefore, the vertex is [tex]\( (h, k) = (8, 6) \)[/tex].
2. Substitute the vertex into the vertex form equation:
The equation now looks like [tex]\( f(x) = a(x-8)^2 + 6 \)[/tex].
3. Determine the value of [tex]\(a\)[/tex]:
To find the value of [tex]\(a\)[/tex], use another point from the table. Let's use the point [tex]\((6, -2)\)[/tex].
Substitute [tex]\( x = 6 \)[/tex] and [tex]\( f(x) = -2 \)[/tex] into the equation:
[tex]\[ -2 = a(6 - 8)^2 + 6 \][/tex]
4. Solve for [tex]\(a\)[/tex]:
[tex]\[ -2 = a(-2)^2 + 6 \][/tex]
[tex]\[ -2 = 4a + 6 \][/tex]
Subtract 6 from both sides:
[tex]\[ -2 - 6 = 4a \][/tex]
[tex]\[ -8 = 4a \][/tex]
Divide both sides by 4:
[tex]\[ a = -2 \][/tex]
5. Write the final equation:
Substitute [tex]\(a = -2\)[/tex], [tex]\(h = 8\)[/tex], and [tex]\(k = 6\)[/tex] into the vertex form equation:
[tex]\[ f(x) = -2(x-8)^2 + 6 \][/tex]
So, the equation of the function in vertex form is:
[tex]\[ f(x) = -2(x-8)^2 + 6 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.