Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's solve the problem step-by-step.
1. Define the variables:
- Let [tex]\( w \)[/tex] be the width of the rectangular prism.
- Let [tex]\( h \)[/tex] be the height of the rectangular prism, given as [tex]\( 6 \)[/tex] feet.
- Let [tex]\( l \)[/tex] be the length of the rectangular prism, which is given as [tex]\( 2 \)[/tex] feet more than its width, so [tex]\( l = w + 2 \)[/tex].
2. Recall the volume formula:
- The volume [tex]\( V \)[/tex] of a rectangular prism is given by the formula [tex]\( V = l \cdot w \cdot h \)[/tex].
3. Substitute the expressions for [tex]\( l \)[/tex] and [tex]\( h \)[/tex]:
- Length [tex]\( l = w + 2 \)[/tex]
- Height [tex]\( h = 6 \)[/tex] feet
This gives:
[tex]\[ V = (w + 2) \cdot w \cdot 6 \][/tex]
4. Rewrite the formula by distributing and combining like terms:
[tex]\[ V = 6w \cdot (w + 2) \][/tex]
5. Simplify the expression:
[tex]\[ V = 6w \cdot w + 6w \cdot 2 \][/tex]
[tex]\[ V = 6w^2 + 12w \][/tex]
Therefore, the equation that represents the volume of the storage container in terms of its width [tex]\( w \)[/tex] is:
[tex]\[ V = 6w^2 + 12w \][/tex]
The correct answer is:
A. [tex]\(\quad V = 6w^2 + 12w\)[/tex]
1. Define the variables:
- Let [tex]\( w \)[/tex] be the width of the rectangular prism.
- Let [tex]\( h \)[/tex] be the height of the rectangular prism, given as [tex]\( 6 \)[/tex] feet.
- Let [tex]\( l \)[/tex] be the length of the rectangular prism, which is given as [tex]\( 2 \)[/tex] feet more than its width, so [tex]\( l = w + 2 \)[/tex].
2. Recall the volume formula:
- The volume [tex]\( V \)[/tex] of a rectangular prism is given by the formula [tex]\( V = l \cdot w \cdot h \)[/tex].
3. Substitute the expressions for [tex]\( l \)[/tex] and [tex]\( h \)[/tex]:
- Length [tex]\( l = w + 2 \)[/tex]
- Height [tex]\( h = 6 \)[/tex] feet
This gives:
[tex]\[ V = (w + 2) \cdot w \cdot 6 \][/tex]
4. Rewrite the formula by distributing and combining like terms:
[tex]\[ V = 6w \cdot (w + 2) \][/tex]
5. Simplify the expression:
[tex]\[ V = 6w \cdot w + 6w \cdot 2 \][/tex]
[tex]\[ V = 6w^2 + 12w \][/tex]
Therefore, the equation that represents the volume of the storage container in terms of its width [tex]\( w \)[/tex] is:
[tex]\[ V = 6w^2 + 12w \][/tex]
The correct answer is:
A. [tex]\(\quad V = 6w^2 + 12w\)[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.