Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's solve the polynomial inequality [tex]\( x^2 - 12x + 27 > 0 \)[/tex] step by step.
### Step 1: Set the polynomial equal to zero
Firstly, we need to find the points where the polynomial [tex]\( x^2 - 12x + 27 \)[/tex] equals zero. These points are called boundary points and can be found by solving the equation:
[tex]\[ x^2 - 12x + 27 = 0 \][/tex]
### Step 2: Solve the quadratic equation
To solve the quadratic equation, we can factorize it:
[tex]\[ x^2 - 12x + 27 = (x - 3)(x - 9) = 0 \][/tex]
Setting each factor to zero gives us the boundary points:
[tex]\[ x - 3 = 0 \implies x = 3 \][/tex]
[tex]\[ x - 9 = 0 \implies x = 9 \][/tex]
So, the boundary points are [tex]\( x = 3 \)[/tex] and [tex]\( x = 9 \)[/tex].
### Step 3: Determine the sign intervals
The boundary points divide the number line into three intervals:
1. [tex]\( (-\infty, 3) \)[/tex]
2. [tex]\( (3, 9) \)[/tex]
3. [tex]\( (9, \infty) \)[/tex]
We need to determine whether [tex]\( x^2 - 12x + 27 \)[/tex] is positive or negative in each of these intervals.
#### Interval [tex]\( (-\infty, 3) \)[/tex]:
Choose a test point less than 3, for example, [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 0^2 - 12(0) + 27 = 27 \][/tex]
Since 27 is positive, [tex]\( f(x) > 0 \)[/tex] on the interval [tex]\( (-\infty, 3) \)[/tex].
#### Interval [tex]\( (3, 9) \)[/tex]:
Choose a test point between 3 and 9, for example, [tex]\( x = 5 \)[/tex]:
[tex]\[ f(5) = 5^2 - 12(5) + 27 = 25 - 60 + 27 = -8 \][/tex]
Since -8 is negative, [tex]\( f(x) < 0 \)[/tex] on the interval [tex]\( (3, 9) \)[/tex].
#### Interval [tex]\( (9, \infty) \)[/tex]:
Choose a test point greater than 9, for example, [tex]\( x = 10 \)[/tex]:
[tex]\[ f(10) = 10^2 - 12(10) + 27 = 100 - 120 + 27 = 7 \][/tex]
Since 7 is positive, [tex]\( f(x) > 0 \)[/tex] on the interval [tex]\( (9, \infty) \)[/tex].
### Step 4: Write the solution in interval notation
The polynomial [tex]\( x^2 - 12x + 27 > 0 \)[/tex] is true wherever the function is positive. Based on our analysis, these intervals are:
[tex]\[ (-\infty, 3) \cup (9, \infty) \][/tex]
### Step 5: Interpret the solution in the given table format
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline Interval & $(-\infty, 3)$ & $(3, 9)$ & $(9, \infty)$ \\ \hline Sign & positive & negative & positive \\ \hline \end{tabular} \][/tex]
Therefore, the solutions to the polynomial inequality [tex]\( x^2 - 12x + 27 > 0 \)[/tex] can be expressed in interval notation as:
[tex]\[ (-\infty, 3) \cup (9, \infty) \][/tex]
Here you also have the graph representation on the number line:
[tex]\[ \begin{array}{ccc} \text{Negative} & \text{Positive} & \text{Positive} \end{array} \][/tex]
And the intervals for which [tex]\( f(x) > 0 \)[/tex] are:
[tex]\[ x \in (-\infty, 3) \cup (9, \infty) \][/tex]
### Step 1: Set the polynomial equal to zero
Firstly, we need to find the points where the polynomial [tex]\( x^2 - 12x + 27 \)[/tex] equals zero. These points are called boundary points and can be found by solving the equation:
[tex]\[ x^2 - 12x + 27 = 0 \][/tex]
### Step 2: Solve the quadratic equation
To solve the quadratic equation, we can factorize it:
[tex]\[ x^2 - 12x + 27 = (x - 3)(x - 9) = 0 \][/tex]
Setting each factor to zero gives us the boundary points:
[tex]\[ x - 3 = 0 \implies x = 3 \][/tex]
[tex]\[ x - 9 = 0 \implies x = 9 \][/tex]
So, the boundary points are [tex]\( x = 3 \)[/tex] and [tex]\( x = 9 \)[/tex].
### Step 3: Determine the sign intervals
The boundary points divide the number line into three intervals:
1. [tex]\( (-\infty, 3) \)[/tex]
2. [tex]\( (3, 9) \)[/tex]
3. [tex]\( (9, \infty) \)[/tex]
We need to determine whether [tex]\( x^2 - 12x + 27 \)[/tex] is positive or negative in each of these intervals.
#### Interval [tex]\( (-\infty, 3) \)[/tex]:
Choose a test point less than 3, for example, [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 0^2 - 12(0) + 27 = 27 \][/tex]
Since 27 is positive, [tex]\( f(x) > 0 \)[/tex] on the interval [tex]\( (-\infty, 3) \)[/tex].
#### Interval [tex]\( (3, 9) \)[/tex]:
Choose a test point between 3 and 9, for example, [tex]\( x = 5 \)[/tex]:
[tex]\[ f(5) = 5^2 - 12(5) + 27 = 25 - 60 + 27 = -8 \][/tex]
Since -8 is negative, [tex]\( f(x) < 0 \)[/tex] on the interval [tex]\( (3, 9) \)[/tex].
#### Interval [tex]\( (9, \infty) \)[/tex]:
Choose a test point greater than 9, for example, [tex]\( x = 10 \)[/tex]:
[tex]\[ f(10) = 10^2 - 12(10) + 27 = 100 - 120 + 27 = 7 \][/tex]
Since 7 is positive, [tex]\( f(x) > 0 \)[/tex] on the interval [tex]\( (9, \infty) \)[/tex].
### Step 4: Write the solution in interval notation
The polynomial [tex]\( x^2 - 12x + 27 > 0 \)[/tex] is true wherever the function is positive. Based on our analysis, these intervals are:
[tex]\[ (-\infty, 3) \cup (9, \infty) \][/tex]
### Step 5: Interpret the solution in the given table format
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline Interval & $(-\infty, 3)$ & $(3, 9)$ & $(9, \infty)$ \\ \hline Sign & positive & negative & positive \\ \hline \end{tabular} \][/tex]
Therefore, the solutions to the polynomial inequality [tex]\( x^2 - 12x + 27 > 0 \)[/tex] can be expressed in interval notation as:
[tex]\[ (-\infty, 3) \cup (9, \infty) \][/tex]
Here you also have the graph representation on the number line:
[tex]\[ \begin{array}{ccc} \text{Negative} & \text{Positive} & \text{Positive} \end{array} \][/tex]
And the intervals for which [tex]\( f(x) > 0 \)[/tex] are:
[tex]\[ x \in (-\infty, 3) \cup (9, \infty) \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.