Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's carefully walk through the solution step-by-step using probability concepts.
### Given Information:
1. Positive Cases:
- Virus positive: 425
- No virus positive: 7960
2. Negative Cases:
- Virus negative: 75
- No virus negative: 91540
3. Totals:
- Total positive: 425 (virus positive) + 7960 (no virus positive) = 8385
- Total negative: 75 (virus negative) + 91540 (no virus negative) = 91615
- Total number of people: 100000
### Part (a): Finding [tex]\( P(A \mid B) \)[/tex]
This is the probability that a person has the virus given that they have tested positive.
Using the definition of conditional probability:
[tex]\[ P(A \mid B) = \frac{P(A \cap B)}{P(B)} \][/tex]
Where:
- [tex]\( P(A \cap B) \)[/tex] is the probability of testing positive and having the virus.
- [tex]\( P(B) \)[/tex] is the probability of testing positive.
From the data:
- [tex]\( P(A \cap B) = \frac{425}{100000} \)[/tex]
- [tex]\( P(B) = \frac{8385}{100000} \)[/tex]
So,
[tex]\[ P(A \mid B) = \frac{\frac{425}{100000}}{\frac{8385}{100000}} = \frac{425}{8385} \][/tex]
Now, calculate [tex]\(\frac{425}{8385} \)[/tex]:
[tex]\[ P(A \mid B) \approx 0.0507 \][/tex]
Therefore,
[tex]\[ P(A \mid B) = 5.07\% \][/tex]
### Part (b): Finding [tex]\( P(\neg A \mid \neg B) \)[/tex]
This is the probability that a person does not have the virus given that they test negative.
Using the definition of conditional probability:
[tex]\[ P(\neg A \mid \neg B) = \frac{P(\neg A \cap \neg B)}{P(\neg B)} \][/tex]
Where:
- [tex]\( P(\neg A \cap \neg B) \)[/tex] is the probability of testing negative and not having the virus.
- [tex]\( P(\neg B) \)[/tex] is the probability of testing negative.
From the data:
- [tex]\( P(\neg A \cap \neg B) = \frac{91540}{100000} \)[/tex]
- [tex]\( P(\neg B) = \frac{91615}{100000} \)[/tex]
So,
[tex]\[ P(\neg A \mid \neg B) = \frac{\frac{91540}{100000}}{\frac{91615}{100000}} = \frac{91540}{91615} \][/tex]
Now, calculate [tex]\(\frac{91540}{91615} \)[/tex]:
[tex]\[ P(\neg A \mid \neg B) \approx 0.9992 \][/tex]
Therefore,
[tex]\[ P(\neg A \mid \neg B) = 99.92\% \][/tex]
### Final Answers:
a. [tex]\( P(A \mid B) = 5.07 \)[/tex]
b. [tex]\( P(\neg A \mid \neg B) = 99.92 \)[/tex]
These results reflect the respective probabilities rounded to the nearest hundredth of a percent as required.
### Given Information:
1. Positive Cases:
- Virus positive: 425
- No virus positive: 7960
2. Negative Cases:
- Virus negative: 75
- No virus negative: 91540
3. Totals:
- Total positive: 425 (virus positive) + 7960 (no virus positive) = 8385
- Total negative: 75 (virus negative) + 91540 (no virus negative) = 91615
- Total number of people: 100000
### Part (a): Finding [tex]\( P(A \mid B) \)[/tex]
This is the probability that a person has the virus given that they have tested positive.
Using the definition of conditional probability:
[tex]\[ P(A \mid B) = \frac{P(A \cap B)}{P(B)} \][/tex]
Where:
- [tex]\( P(A \cap B) \)[/tex] is the probability of testing positive and having the virus.
- [tex]\( P(B) \)[/tex] is the probability of testing positive.
From the data:
- [tex]\( P(A \cap B) = \frac{425}{100000} \)[/tex]
- [tex]\( P(B) = \frac{8385}{100000} \)[/tex]
So,
[tex]\[ P(A \mid B) = \frac{\frac{425}{100000}}{\frac{8385}{100000}} = \frac{425}{8385} \][/tex]
Now, calculate [tex]\(\frac{425}{8385} \)[/tex]:
[tex]\[ P(A \mid B) \approx 0.0507 \][/tex]
Therefore,
[tex]\[ P(A \mid B) = 5.07\% \][/tex]
### Part (b): Finding [tex]\( P(\neg A \mid \neg B) \)[/tex]
This is the probability that a person does not have the virus given that they test negative.
Using the definition of conditional probability:
[tex]\[ P(\neg A \mid \neg B) = \frac{P(\neg A \cap \neg B)}{P(\neg B)} \][/tex]
Where:
- [tex]\( P(\neg A \cap \neg B) \)[/tex] is the probability of testing negative and not having the virus.
- [tex]\( P(\neg B) \)[/tex] is the probability of testing negative.
From the data:
- [tex]\( P(\neg A \cap \neg B) = \frac{91540}{100000} \)[/tex]
- [tex]\( P(\neg B) = \frac{91615}{100000} \)[/tex]
So,
[tex]\[ P(\neg A \mid \neg B) = \frac{\frac{91540}{100000}}{\frac{91615}{100000}} = \frac{91540}{91615} \][/tex]
Now, calculate [tex]\(\frac{91540}{91615} \)[/tex]:
[tex]\[ P(\neg A \mid \neg B) \approx 0.9992 \][/tex]
Therefore,
[tex]\[ P(\neg A \mid \neg B) = 99.92\% \][/tex]
### Final Answers:
a. [tex]\( P(A \mid B) = 5.07 \)[/tex]
b. [tex]\( P(\neg A \mid \neg B) = 99.92 \)[/tex]
These results reflect the respective probabilities rounded to the nearest hundredth of a percent as required.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.