Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's carefully walk through the solution step-by-step using probability concepts.
### Given Information:
1. Positive Cases:
- Virus positive: 425
- No virus positive: 7960
2. Negative Cases:
- Virus negative: 75
- No virus negative: 91540
3. Totals:
- Total positive: 425 (virus positive) + 7960 (no virus positive) = 8385
- Total negative: 75 (virus negative) + 91540 (no virus negative) = 91615
- Total number of people: 100000
### Part (a): Finding [tex]\( P(A \mid B) \)[/tex]
This is the probability that a person has the virus given that they have tested positive.
Using the definition of conditional probability:
[tex]\[ P(A \mid B) = \frac{P(A \cap B)}{P(B)} \][/tex]
Where:
- [tex]\( P(A \cap B) \)[/tex] is the probability of testing positive and having the virus.
- [tex]\( P(B) \)[/tex] is the probability of testing positive.
From the data:
- [tex]\( P(A \cap B) = \frac{425}{100000} \)[/tex]
- [tex]\( P(B) = \frac{8385}{100000} \)[/tex]
So,
[tex]\[ P(A \mid B) = \frac{\frac{425}{100000}}{\frac{8385}{100000}} = \frac{425}{8385} \][/tex]
Now, calculate [tex]\(\frac{425}{8385} \)[/tex]:
[tex]\[ P(A \mid B) \approx 0.0507 \][/tex]
Therefore,
[tex]\[ P(A \mid B) = 5.07\% \][/tex]
### Part (b): Finding [tex]\( P(\neg A \mid \neg B) \)[/tex]
This is the probability that a person does not have the virus given that they test negative.
Using the definition of conditional probability:
[tex]\[ P(\neg A \mid \neg B) = \frac{P(\neg A \cap \neg B)}{P(\neg B)} \][/tex]
Where:
- [tex]\( P(\neg A \cap \neg B) \)[/tex] is the probability of testing negative and not having the virus.
- [tex]\( P(\neg B) \)[/tex] is the probability of testing negative.
From the data:
- [tex]\( P(\neg A \cap \neg B) = \frac{91540}{100000} \)[/tex]
- [tex]\( P(\neg B) = \frac{91615}{100000} \)[/tex]
So,
[tex]\[ P(\neg A \mid \neg B) = \frac{\frac{91540}{100000}}{\frac{91615}{100000}} = \frac{91540}{91615} \][/tex]
Now, calculate [tex]\(\frac{91540}{91615} \)[/tex]:
[tex]\[ P(\neg A \mid \neg B) \approx 0.9992 \][/tex]
Therefore,
[tex]\[ P(\neg A \mid \neg B) = 99.92\% \][/tex]
### Final Answers:
a. [tex]\( P(A \mid B) = 5.07 \)[/tex]
b. [tex]\( P(\neg A \mid \neg B) = 99.92 \)[/tex]
These results reflect the respective probabilities rounded to the nearest hundredth of a percent as required.
### Given Information:
1. Positive Cases:
- Virus positive: 425
- No virus positive: 7960
2. Negative Cases:
- Virus negative: 75
- No virus negative: 91540
3. Totals:
- Total positive: 425 (virus positive) + 7960 (no virus positive) = 8385
- Total negative: 75 (virus negative) + 91540 (no virus negative) = 91615
- Total number of people: 100000
### Part (a): Finding [tex]\( P(A \mid B) \)[/tex]
This is the probability that a person has the virus given that they have tested positive.
Using the definition of conditional probability:
[tex]\[ P(A \mid B) = \frac{P(A \cap B)}{P(B)} \][/tex]
Where:
- [tex]\( P(A \cap B) \)[/tex] is the probability of testing positive and having the virus.
- [tex]\( P(B) \)[/tex] is the probability of testing positive.
From the data:
- [tex]\( P(A \cap B) = \frac{425}{100000} \)[/tex]
- [tex]\( P(B) = \frac{8385}{100000} \)[/tex]
So,
[tex]\[ P(A \mid B) = \frac{\frac{425}{100000}}{\frac{8385}{100000}} = \frac{425}{8385} \][/tex]
Now, calculate [tex]\(\frac{425}{8385} \)[/tex]:
[tex]\[ P(A \mid B) \approx 0.0507 \][/tex]
Therefore,
[tex]\[ P(A \mid B) = 5.07\% \][/tex]
### Part (b): Finding [tex]\( P(\neg A \mid \neg B) \)[/tex]
This is the probability that a person does not have the virus given that they test negative.
Using the definition of conditional probability:
[tex]\[ P(\neg A \mid \neg B) = \frac{P(\neg A \cap \neg B)}{P(\neg B)} \][/tex]
Where:
- [tex]\( P(\neg A \cap \neg B) \)[/tex] is the probability of testing negative and not having the virus.
- [tex]\( P(\neg B) \)[/tex] is the probability of testing negative.
From the data:
- [tex]\( P(\neg A \cap \neg B) = \frac{91540}{100000} \)[/tex]
- [tex]\( P(\neg B) = \frac{91615}{100000} \)[/tex]
So,
[tex]\[ P(\neg A \mid \neg B) = \frac{\frac{91540}{100000}}{\frac{91615}{100000}} = \frac{91540}{91615} \][/tex]
Now, calculate [tex]\(\frac{91540}{91615} \)[/tex]:
[tex]\[ P(\neg A \mid \neg B) \approx 0.9992 \][/tex]
Therefore,
[tex]\[ P(\neg A \mid \neg B) = 99.92\% \][/tex]
### Final Answers:
a. [tex]\( P(A \mid B) = 5.07 \)[/tex]
b. [tex]\( P(\neg A \mid \neg B) = 99.92 \)[/tex]
These results reflect the respective probabilities rounded to the nearest hundredth of a percent as required.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.