Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's carefully walk through the solution step-by-step using probability concepts.
### Given Information:
1. Positive Cases:
- Virus positive: 425
- No virus positive: 7960
2. Negative Cases:
- Virus negative: 75
- No virus negative: 91540
3. Totals:
- Total positive: 425 (virus positive) + 7960 (no virus positive) = 8385
- Total negative: 75 (virus negative) + 91540 (no virus negative) = 91615
- Total number of people: 100000
### Part (a): Finding [tex]\( P(A \mid B) \)[/tex]
This is the probability that a person has the virus given that they have tested positive.
Using the definition of conditional probability:
[tex]\[ P(A \mid B) = \frac{P(A \cap B)}{P(B)} \][/tex]
Where:
- [tex]\( P(A \cap B) \)[/tex] is the probability of testing positive and having the virus.
- [tex]\( P(B) \)[/tex] is the probability of testing positive.
From the data:
- [tex]\( P(A \cap B) = \frac{425}{100000} \)[/tex]
- [tex]\( P(B) = \frac{8385}{100000} \)[/tex]
So,
[tex]\[ P(A \mid B) = \frac{\frac{425}{100000}}{\frac{8385}{100000}} = \frac{425}{8385} \][/tex]
Now, calculate [tex]\(\frac{425}{8385} \)[/tex]:
[tex]\[ P(A \mid B) \approx 0.0507 \][/tex]
Therefore,
[tex]\[ P(A \mid B) = 5.07\% \][/tex]
### Part (b): Finding [tex]\( P(\neg A \mid \neg B) \)[/tex]
This is the probability that a person does not have the virus given that they test negative.
Using the definition of conditional probability:
[tex]\[ P(\neg A \mid \neg B) = \frac{P(\neg A \cap \neg B)}{P(\neg B)} \][/tex]
Where:
- [tex]\( P(\neg A \cap \neg B) \)[/tex] is the probability of testing negative and not having the virus.
- [tex]\( P(\neg B) \)[/tex] is the probability of testing negative.
From the data:
- [tex]\( P(\neg A \cap \neg B) = \frac{91540}{100000} \)[/tex]
- [tex]\( P(\neg B) = \frac{91615}{100000} \)[/tex]
So,
[tex]\[ P(\neg A \mid \neg B) = \frac{\frac{91540}{100000}}{\frac{91615}{100000}} = \frac{91540}{91615} \][/tex]
Now, calculate [tex]\(\frac{91540}{91615} \)[/tex]:
[tex]\[ P(\neg A \mid \neg B) \approx 0.9992 \][/tex]
Therefore,
[tex]\[ P(\neg A \mid \neg B) = 99.92\% \][/tex]
### Final Answers:
a. [tex]\( P(A \mid B) = 5.07 \)[/tex]
b. [tex]\( P(\neg A \mid \neg B) = 99.92 \)[/tex]
These results reflect the respective probabilities rounded to the nearest hundredth of a percent as required.
### Given Information:
1. Positive Cases:
- Virus positive: 425
- No virus positive: 7960
2. Negative Cases:
- Virus negative: 75
- No virus negative: 91540
3. Totals:
- Total positive: 425 (virus positive) + 7960 (no virus positive) = 8385
- Total negative: 75 (virus negative) + 91540 (no virus negative) = 91615
- Total number of people: 100000
### Part (a): Finding [tex]\( P(A \mid B) \)[/tex]
This is the probability that a person has the virus given that they have tested positive.
Using the definition of conditional probability:
[tex]\[ P(A \mid B) = \frac{P(A \cap B)}{P(B)} \][/tex]
Where:
- [tex]\( P(A \cap B) \)[/tex] is the probability of testing positive and having the virus.
- [tex]\( P(B) \)[/tex] is the probability of testing positive.
From the data:
- [tex]\( P(A \cap B) = \frac{425}{100000} \)[/tex]
- [tex]\( P(B) = \frac{8385}{100000} \)[/tex]
So,
[tex]\[ P(A \mid B) = \frac{\frac{425}{100000}}{\frac{8385}{100000}} = \frac{425}{8385} \][/tex]
Now, calculate [tex]\(\frac{425}{8385} \)[/tex]:
[tex]\[ P(A \mid B) \approx 0.0507 \][/tex]
Therefore,
[tex]\[ P(A \mid B) = 5.07\% \][/tex]
### Part (b): Finding [tex]\( P(\neg A \mid \neg B) \)[/tex]
This is the probability that a person does not have the virus given that they test negative.
Using the definition of conditional probability:
[tex]\[ P(\neg A \mid \neg B) = \frac{P(\neg A \cap \neg B)}{P(\neg B)} \][/tex]
Where:
- [tex]\( P(\neg A \cap \neg B) \)[/tex] is the probability of testing negative and not having the virus.
- [tex]\( P(\neg B) \)[/tex] is the probability of testing negative.
From the data:
- [tex]\( P(\neg A \cap \neg B) = \frac{91540}{100000} \)[/tex]
- [tex]\( P(\neg B) = \frac{91615}{100000} \)[/tex]
So,
[tex]\[ P(\neg A \mid \neg B) = \frac{\frac{91540}{100000}}{\frac{91615}{100000}} = \frac{91540}{91615} \][/tex]
Now, calculate [tex]\(\frac{91540}{91615} \)[/tex]:
[tex]\[ P(\neg A \mid \neg B) \approx 0.9992 \][/tex]
Therefore,
[tex]\[ P(\neg A \mid \neg B) = 99.92\% \][/tex]
### Final Answers:
a. [tex]\( P(A \mid B) = 5.07 \)[/tex]
b. [tex]\( P(\neg A \mid \neg B) = 99.92 \)[/tex]
These results reflect the respective probabilities rounded to the nearest hundredth of a percent as required.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.