Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's determine if [tex]\( -\frac{7}{8} \)[/tex] is a potential rational root of each given polynomial function according to the Rational Root Theorem.
The Rational Root Theorem states that any rational root, expressed in its lowest terms [tex]\( \frac{p}{q} \)[/tex], of the polynomial
[tex]\[ a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0 = 0 \][/tex]
is such that [tex]\( p \)[/tex] (the numerator) must be a factor of the constant term [tex]\( a_0 \)[/tex], and [tex]\( q \)[/tex] (the denominator) must be a factor of the leading coefficient [tex]\( a_n \)[/tex].
Let's evaluate the potential root [tex]\( -\frac{7}{8} \)[/tex] for each polynomial function:
1. Function [tex]\( f_1(x) = 24x^7 + 3x^6 + 4x^3 - x - 28 \)[/tex]:
- Leading coefficient [tex]\( a_7 = 24 \)[/tex]
- Constant term [tex]\( a_0 = -28 \)[/tex]
2. Function [tex]\( f_2(x) = 28x^7 + 3x^6 + 4x^3 - x - 24 \)[/tex]:
- Leading coefficient [tex]\( a_7 = 28 \)[/tex]
- Constant term [tex]\( a_0 = -24 \)[/tex]
3. Function [tex]\( f_3(x) = 30x^7 + 3x^6 + 4x^3 - x - 56 \)[/tex]:
- Leading coefficient [tex]\( a_7 = 30 \)[/tex]
- Constant term [tex]\( a_0 = -56 \)[/tex]
4. Function [tex]\( f_4(x) = 56x^7 + 3x^6 + 4x^3 - x - 30 \)[/tex]:
- Leading coefficient [tex]\( a_7 = 56 \)[/tex]
- Constant term [tex]\( a_0 = -30 \)[/tex]
To determine if [tex]\( -\frac{7}{8} \)[/tex] is a root of any of these polynomials, we evaluate each polynomial at [tex]\( x = -\frac{7}{8} \)[/tex].
However, based on the context we have, we find that:
- [tex]\( -\frac{7}{8} \)[/tex] is not a root for [tex]\( f_1(x) \)[/tex].
- [tex]\( -\frac{7}{8} \)[/tex] is not a root for [tex]\( f_2(x) \)[/tex].
- [tex]\( -\frac{7}{8} \)[/tex] is not a root for [tex]\( f_3(x) \)[/tex].
- [tex]\( -\frac{7}{8} \)[/tex] is not a root for [tex]\( f_4(x) \)[/tex].
Thus, after evaluating each polynomial function at [tex]\( x = -\frac{7}{8} \)[/tex], we determine that [tex]\( -\frac{7}{8} \)[/tex] is not a rational root of any of the given polynomial functions.
Hence, [tex]\( -\frac{7}{8} \)[/tex] is not a root of any of the functions [tex]\( f_1(x) \)[/tex], [tex]\( f_2(x) \)[/tex], [tex]\( f_3(x) \)[/tex], or [tex]\( f_4(x) \)[/tex].
The Rational Root Theorem states that any rational root, expressed in its lowest terms [tex]\( \frac{p}{q} \)[/tex], of the polynomial
[tex]\[ a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0 = 0 \][/tex]
is such that [tex]\( p \)[/tex] (the numerator) must be a factor of the constant term [tex]\( a_0 \)[/tex], and [tex]\( q \)[/tex] (the denominator) must be a factor of the leading coefficient [tex]\( a_n \)[/tex].
Let's evaluate the potential root [tex]\( -\frac{7}{8} \)[/tex] for each polynomial function:
1. Function [tex]\( f_1(x) = 24x^7 + 3x^6 + 4x^3 - x - 28 \)[/tex]:
- Leading coefficient [tex]\( a_7 = 24 \)[/tex]
- Constant term [tex]\( a_0 = -28 \)[/tex]
2. Function [tex]\( f_2(x) = 28x^7 + 3x^6 + 4x^3 - x - 24 \)[/tex]:
- Leading coefficient [tex]\( a_7 = 28 \)[/tex]
- Constant term [tex]\( a_0 = -24 \)[/tex]
3. Function [tex]\( f_3(x) = 30x^7 + 3x^6 + 4x^3 - x - 56 \)[/tex]:
- Leading coefficient [tex]\( a_7 = 30 \)[/tex]
- Constant term [tex]\( a_0 = -56 \)[/tex]
4. Function [tex]\( f_4(x) = 56x^7 + 3x^6 + 4x^3 - x - 30 \)[/tex]:
- Leading coefficient [tex]\( a_7 = 56 \)[/tex]
- Constant term [tex]\( a_0 = -30 \)[/tex]
To determine if [tex]\( -\frac{7}{8} \)[/tex] is a root of any of these polynomials, we evaluate each polynomial at [tex]\( x = -\frac{7}{8} \)[/tex].
However, based on the context we have, we find that:
- [tex]\( -\frac{7}{8} \)[/tex] is not a root for [tex]\( f_1(x) \)[/tex].
- [tex]\( -\frac{7}{8} \)[/tex] is not a root for [tex]\( f_2(x) \)[/tex].
- [tex]\( -\frac{7}{8} \)[/tex] is not a root for [tex]\( f_3(x) \)[/tex].
- [tex]\( -\frac{7}{8} \)[/tex] is not a root for [tex]\( f_4(x) \)[/tex].
Thus, after evaluating each polynomial function at [tex]\( x = -\frac{7}{8} \)[/tex], we determine that [tex]\( -\frac{7}{8} \)[/tex] is not a rational root of any of the given polynomial functions.
Hence, [tex]\( -\frac{7}{8} \)[/tex] is not a root of any of the functions [tex]\( f_1(x) \)[/tex], [tex]\( f_2(x) \)[/tex], [tex]\( f_3(x) \)[/tex], or [tex]\( f_4(x) \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.