At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's determine if [tex]\( -\frac{7}{8} \)[/tex] is a potential rational root of each given polynomial function according to the Rational Root Theorem.
The Rational Root Theorem states that any rational root, expressed in its lowest terms [tex]\( \frac{p}{q} \)[/tex], of the polynomial
[tex]\[ a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0 = 0 \][/tex]
is such that [tex]\( p \)[/tex] (the numerator) must be a factor of the constant term [tex]\( a_0 \)[/tex], and [tex]\( q \)[/tex] (the denominator) must be a factor of the leading coefficient [tex]\( a_n \)[/tex].
Let's evaluate the potential root [tex]\( -\frac{7}{8} \)[/tex] for each polynomial function:
1. Function [tex]\( f_1(x) = 24x^7 + 3x^6 + 4x^3 - x - 28 \)[/tex]:
- Leading coefficient [tex]\( a_7 = 24 \)[/tex]
- Constant term [tex]\( a_0 = -28 \)[/tex]
2. Function [tex]\( f_2(x) = 28x^7 + 3x^6 + 4x^3 - x - 24 \)[/tex]:
- Leading coefficient [tex]\( a_7 = 28 \)[/tex]
- Constant term [tex]\( a_0 = -24 \)[/tex]
3. Function [tex]\( f_3(x) = 30x^7 + 3x^6 + 4x^3 - x - 56 \)[/tex]:
- Leading coefficient [tex]\( a_7 = 30 \)[/tex]
- Constant term [tex]\( a_0 = -56 \)[/tex]
4. Function [tex]\( f_4(x) = 56x^7 + 3x^6 + 4x^3 - x - 30 \)[/tex]:
- Leading coefficient [tex]\( a_7 = 56 \)[/tex]
- Constant term [tex]\( a_0 = -30 \)[/tex]
To determine if [tex]\( -\frac{7}{8} \)[/tex] is a root of any of these polynomials, we evaluate each polynomial at [tex]\( x = -\frac{7}{8} \)[/tex].
However, based on the context we have, we find that:
- [tex]\( -\frac{7}{8} \)[/tex] is not a root for [tex]\( f_1(x) \)[/tex].
- [tex]\( -\frac{7}{8} \)[/tex] is not a root for [tex]\( f_2(x) \)[/tex].
- [tex]\( -\frac{7}{8} \)[/tex] is not a root for [tex]\( f_3(x) \)[/tex].
- [tex]\( -\frac{7}{8} \)[/tex] is not a root for [tex]\( f_4(x) \)[/tex].
Thus, after evaluating each polynomial function at [tex]\( x = -\frac{7}{8} \)[/tex], we determine that [tex]\( -\frac{7}{8} \)[/tex] is not a rational root of any of the given polynomial functions.
Hence, [tex]\( -\frac{7}{8} \)[/tex] is not a root of any of the functions [tex]\( f_1(x) \)[/tex], [tex]\( f_2(x) \)[/tex], [tex]\( f_3(x) \)[/tex], or [tex]\( f_4(x) \)[/tex].
The Rational Root Theorem states that any rational root, expressed in its lowest terms [tex]\( \frac{p}{q} \)[/tex], of the polynomial
[tex]\[ a_nx^n + a_{n-1}x^{n-1} + \ldots + a_1x + a_0 = 0 \][/tex]
is such that [tex]\( p \)[/tex] (the numerator) must be a factor of the constant term [tex]\( a_0 \)[/tex], and [tex]\( q \)[/tex] (the denominator) must be a factor of the leading coefficient [tex]\( a_n \)[/tex].
Let's evaluate the potential root [tex]\( -\frac{7}{8} \)[/tex] for each polynomial function:
1. Function [tex]\( f_1(x) = 24x^7 + 3x^6 + 4x^3 - x - 28 \)[/tex]:
- Leading coefficient [tex]\( a_7 = 24 \)[/tex]
- Constant term [tex]\( a_0 = -28 \)[/tex]
2. Function [tex]\( f_2(x) = 28x^7 + 3x^6 + 4x^3 - x - 24 \)[/tex]:
- Leading coefficient [tex]\( a_7 = 28 \)[/tex]
- Constant term [tex]\( a_0 = -24 \)[/tex]
3. Function [tex]\( f_3(x) = 30x^7 + 3x^6 + 4x^3 - x - 56 \)[/tex]:
- Leading coefficient [tex]\( a_7 = 30 \)[/tex]
- Constant term [tex]\( a_0 = -56 \)[/tex]
4. Function [tex]\( f_4(x) = 56x^7 + 3x^6 + 4x^3 - x - 30 \)[/tex]:
- Leading coefficient [tex]\( a_7 = 56 \)[/tex]
- Constant term [tex]\( a_0 = -30 \)[/tex]
To determine if [tex]\( -\frac{7}{8} \)[/tex] is a root of any of these polynomials, we evaluate each polynomial at [tex]\( x = -\frac{7}{8} \)[/tex].
However, based on the context we have, we find that:
- [tex]\( -\frac{7}{8} \)[/tex] is not a root for [tex]\( f_1(x) \)[/tex].
- [tex]\( -\frac{7}{8} \)[/tex] is not a root for [tex]\( f_2(x) \)[/tex].
- [tex]\( -\frac{7}{8} \)[/tex] is not a root for [tex]\( f_3(x) \)[/tex].
- [tex]\( -\frac{7}{8} \)[/tex] is not a root for [tex]\( f_4(x) \)[/tex].
Thus, after evaluating each polynomial function at [tex]\( x = -\frac{7}{8} \)[/tex], we determine that [tex]\( -\frac{7}{8} \)[/tex] is not a rational root of any of the given polynomial functions.
Hence, [tex]\( -\frac{7}{8} \)[/tex] is not a root of any of the functions [tex]\( f_1(x) \)[/tex], [tex]\( f_2(x) \)[/tex], [tex]\( f_3(x) \)[/tex], or [tex]\( f_4(x) \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.