Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve this problem, we need to calculate the cumulative binomial probability of having [tex]$x \leq 3$[/tex] successes in 9 independent trials with the probability of success [tex]$p = 0.7$[/tex] in each trial.
The binomial probability formula for having exactly [tex]$k$[/tex] successes in [tex]$n$[/tex] trials is given by:
[tex]\[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
where:
- [tex]\( \binom{n}{k} \)[/tex] is the binomial coefficient, representing the number of ways to choose [tex]$k$[/tex] successes from [tex]$n$[/tex] trials, calculated as [tex]\( \frac{n!}{k!(n-k)!} \)[/tex].
- [tex]\( p^k \)[/tex] is the probability of having [tex]$k$[/tex] successes.
- [tex]\( (1-p)^{n-k} \)[/tex] is the probability of having [tex]$n-k$[/tex] failures.
To find the cumulative probability [tex]\( P(X \leq 3) \)[/tex], we sum the probabilities of having 0, 1, 2, and 3 successes.
Step-by-step, we calculate each probability:
1. For [tex]\( k = 0 \)[/tex] successes:
[tex]\[ P(X = 0) = \binom{9}{0} (0.7)^0 (0.3)^9 \][/tex]
2. For [tex]\( k = 1 \)[/tex] success:
[tex]\[ P(X = 1) = \binom{9}{1} (0.7)^1 (0.3)^8 \][/tex]
3. For [tex]\( k = 2 \)[/tex] successes:
[tex]\[ P(X = 2) = \binom{9}{2} (0.7)^2 (0.3)^7 \][/tex]
4. For [tex]\( k = 3 \)[/tex] successes:
[tex]\[ P(X = 3) = \binom{9}{3} (0.7)^3 (0.3)^6 \][/tex]
Finally, sum up these individual probabilities:
[tex]\[ P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) \][/tex]
After performing the computation for each term and summing them, the cumulative probability comes out to be:
[tex]\[ P(X \leq 3) = 0.025294842 \][/tex]
Therefore, the probability of having 3 or fewer successes out of 9 independent trials, with each trial having a success probability of 0.7, is approximately [tex]\(0.0253\)[/tex].
The binomial probability formula for having exactly [tex]$k$[/tex] successes in [tex]$n$[/tex] trials is given by:
[tex]\[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \][/tex]
where:
- [tex]\( \binom{n}{k} \)[/tex] is the binomial coefficient, representing the number of ways to choose [tex]$k$[/tex] successes from [tex]$n$[/tex] trials, calculated as [tex]\( \frac{n!}{k!(n-k)!} \)[/tex].
- [tex]\( p^k \)[/tex] is the probability of having [tex]$k$[/tex] successes.
- [tex]\( (1-p)^{n-k} \)[/tex] is the probability of having [tex]$n-k$[/tex] failures.
To find the cumulative probability [tex]\( P(X \leq 3) \)[/tex], we sum the probabilities of having 0, 1, 2, and 3 successes.
Step-by-step, we calculate each probability:
1. For [tex]\( k = 0 \)[/tex] successes:
[tex]\[ P(X = 0) = \binom{9}{0} (0.7)^0 (0.3)^9 \][/tex]
2. For [tex]\( k = 1 \)[/tex] success:
[tex]\[ P(X = 1) = \binom{9}{1} (0.7)^1 (0.3)^8 \][/tex]
3. For [tex]\( k = 2 \)[/tex] successes:
[tex]\[ P(X = 2) = \binom{9}{2} (0.7)^2 (0.3)^7 \][/tex]
4. For [tex]\( k = 3 \)[/tex] successes:
[tex]\[ P(X = 3) = \binom{9}{3} (0.7)^3 (0.3)^6 \][/tex]
Finally, sum up these individual probabilities:
[tex]\[ P(X \leq 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) \][/tex]
After performing the computation for each term and summing them, the cumulative probability comes out to be:
[tex]\[ P(X \leq 3) = 0.025294842 \][/tex]
Therefore, the probability of having 3 or fewer successes out of 9 independent trials, with each trial having a success probability of 0.7, is approximately [tex]\(0.0253\)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.