Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's walk through this problem step-by-step.
1. Identify the Reference Angle:
- The given angle is [tex]\(\frac{7\pi}{6}\)[/tex].
- The reference angle for [tex]\(\frac{7\pi}{6}\)[/tex] is [tex]\(\frac{\pi}{6}\)[/tex].
2. Determine the Terminal Point for the Reference Angle:
- The terminal point for the reference angle [tex]\(\frac{\pi}{6}\)[/tex] is [tex]\(\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)\)[/tex].
3. Determine the Quadrant of the Given Angle:
- [tex]\(\frac{7\pi}{6}\)[/tex] is an angle that lies in the third quadrant. Recall that angles in the third quadrant are between [tex]\(\pi\)[/tex] and [tex]\(\frac{3\pi}{2}\)[/tex].
4. Adjust the Signs for the Coordinates:
- In the third quadrant, both the x-coordinate and y-coordinate are negative.
- Therefore, we need to modify the terminal point [tex]\(\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)\)[/tex] accordingly:
- The x-coordinate becomes [tex]\(-\frac{\sqrt{3}}{2}\)[/tex].
- The y-coordinate becomes [tex]\(-\frac{1}{2}\)[/tex].
Combining these steps, the terminal point of [tex]\(\frac{7\pi}{6}\)[/tex] is [tex]\(\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)\)[/tex].
So, the correct answer is:
B. [tex]\(\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)\)[/tex].
1. Identify the Reference Angle:
- The given angle is [tex]\(\frac{7\pi}{6}\)[/tex].
- The reference angle for [tex]\(\frac{7\pi}{6}\)[/tex] is [tex]\(\frac{\pi}{6}\)[/tex].
2. Determine the Terminal Point for the Reference Angle:
- The terminal point for the reference angle [tex]\(\frac{\pi}{6}\)[/tex] is [tex]\(\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)\)[/tex].
3. Determine the Quadrant of the Given Angle:
- [tex]\(\frac{7\pi}{6}\)[/tex] is an angle that lies in the third quadrant. Recall that angles in the third quadrant are between [tex]\(\pi\)[/tex] and [tex]\(\frac{3\pi}{2}\)[/tex].
4. Adjust the Signs for the Coordinates:
- In the third quadrant, both the x-coordinate and y-coordinate are negative.
- Therefore, we need to modify the terminal point [tex]\(\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)\)[/tex] accordingly:
- The x-coordinate becomes [tex]\(-\frac{\sqrt{3}}{2}\)[/tex].
- The y-coordinate becomes [tex]\(-\frac{1}{2}\)[/tex].
Combining these steps, the terminal point of [tex]\(\frac{7\pi}{6}\)[/tex] is [tex]\(\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)\)[/tex].
So, the correct answer is:
B. [tex]\(\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.