Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's solve the problem step-by-step.
Given:
- [tex]\( n = 7 \)[/tex]
- [tex]\( k = 4 \)[/tex]
### 1. Calculating Permutations [tex]\( P_k^n \)[/tex]
Permutations [tex]\( P_k^n \)[/tex] represent the number of ways to arrange [tex]\( k \)[/tex] items out of [tex]\( n \)[/tex] items in a specific order. The formula for permutations is given by:
[tex]\[ P_k^n = \frac{n!}{(n-k)!} \][/tex]
For our case:
[tex]\[ P_4^7 = \frac{7!}{(7-4)!} = \frac{7!}{3!} \][/tex]
Upon evaluating this expression, we get:
[tex]\[ P_4^7 = 840 \][/tex]
So, [tex]\( P_k^n = 840 \)[/tex]
### 2. Calculating Combinations [tex]\( C_k^n \)[/tex]
Combinations [tex]\( C_k^n \)[/tex] represent the number of ways to choose [tex]\( k \)[/tex] items out of [tex]\( n \)[/tex] items without considering the order. The formula for combinations is given by:
[tex]\[ C_k^n = \frac{n!}{k!(n-k)!} \][/tex]
For our case:
[tex]\[ C_4^7 = \frac{7!}{4!(7-4)!} = \frac{7!}{4!3!} \][/tex]
Upon evaluating this expression, we get:
[tex]\[ C_4^7 = 35 \][/tex]
So, [tex]\( C_k^n = 35 \)[/tex]
### 3. Calculating the Number of Ways to Select a Group of 4 out of 7 People for a Committee with 4 Distinct Roles
When selecting a group of 4 out of 7 people where there are 4 distinct roles, each selection must consider the order because the roles are distinct. Therefore, this is a permutation problem.
From our permutation calculation:
[tex]\[ \text{Number of ways} = P_4^7 = 840 \][/tex]
So, there are 840 different ways to select and assign 4 people out of 7 to distinct roles in a committee.
### Final Answers
1. [tex]\( P_k^n = 840 \)[/tex]
2. [tex]\( C_k^n = 35 \)[/tex]
The number of different ways to select a group of 4 out of 7 people for a committee in which there are 4 distinct roles is 840.
Given:
- [tex]\( n = 7 \)[/tex]
- [tex]\( k = 4 \)[/tex]
### 1. Calculating Permutations [tex]\( P_k^n \)[/tex]
Permutations [tex]\( P_k^n \)[/tex] represent the number of ways to arrange [tex]\( k \)[/tex] items out of [tex]\( n \)[/tex] items in a specific order. The formula for permutations is given by:
[tex]\[ P_k^n = \frac{n!}{(n-k)!} \][/tex]
For our case:
[tex]\[ P_4^7 = \frac{7!}{(7-4)!} = \frac{7!}{3!} \][/tex]
Upon evaluating this expression, we get:
[tex]\[ P_4^7 = 840 \][/tex]
So, [tex]\( P_k^n = 840 \)[/tex]
### 2. Calculating Combinations [tex]\( C_k^n \)[/tex]
Combinations [tex]\( C_k^n \)[/tex] represent the number of ways to choose [tex]\( k \)[/tex] items out of [tex]\( n \)[/tex] items without considering the order. The formula for combinations is given by:
[tex]\[ C_k^n = \frac{n!}{k!(n-k)!} \][/tex]
For our case:
[tex]\[ C_4^7 = \frac{7!}{4!(7-4)!} = \frac{7!}{4!3!} \][/tex]
Upon evaluating this expression, we get:
[tex]\[ C_4^7 = 35 \][/tex]
So, [tex]\( C_k^n = 35 \)[/tex]
### 3. Calculating the Number of Ways to Select a Group of 4 out of 7 People for a Committee with 4 Distinct Roles
When selecting a group of 4 out of 7 people where there are 4 distinct roles, each selection must consider the order because the roles are distinct. Therefore, this is a permutation problem.
From our permutation calculation:
[tex]\[ \text{Number of ways} = P_4^7 = 840 \][/tex]
So, there are 840 different ways to select and assign 4 people out of 7 to distinct roles in a committee.
### Final Answers
1. [tex]\( P_k^n = 840 \)[/tex]
2. [tex]\( C_k^n = 35 \)[/tex]
The number of different ways to select a group of 4 out of 7 people for a committee in which there are 4 distinct roles is 840.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.