Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Let's solve and graph the system of inequalities step-by-step.
### Step 1: Understand the inequalities
We have the following inequalities:
1. [tex]\( x + y \geq 4 \)[/tex]
2. [tex]\( y - x \leq 1 \)[/tex]
### Step 2: Rewrite each inequality in a more familiar form
#### Inequality 1: [tex]\( x + y \geq 4 \)[/tex]
Rewriting this inequality, we get:
[tex]\[ y \geq 4 - x \][/tex]
This means, for any point [tex]\((x, y)\)[/tex] in the coordinate plane, [tex]\( y \)[/tex] must be greater than or equal to [tex]\( 4 - x \)[/tex]. The boundary line for this inequality is [tex]\( y = 4 - x \)[/tex], and the region of interest lies above this line.
#### Inequality 2: [tex]\( y - x \leq 1 \)[/tex]
Rewriting this inequality, we get:
[tex]\[ y \leq x + 1 \][/tex]
This means, for any point [tex]\((x, y)\)[/tex] in the coordinate plane, [tex]\( y \)[/tex] must be less than or equal to [tex]\( x + 1 \)[/tex]. The boundary line for this inequality is [tex]\( y = x + 1 \)[/tex], and the region of interest lies below this line.
### Step 3: Plot the boundary lines
- [tex]\( y = 4 - x \)[/tex] (from Inequality 1)
- [tex]\( y = x + 1 \)[/tex] (from Inequality 2)
### Step 4: Determine the regions to shade
- For [tex]\( y \geq 4 - x \)[/tex], shade the area above the line [tex]\( y = 4 - x \)[/tex].
- For [tex]\( y \leq x + 1 \)[/tex], shade the area below the line [tex]\( y = x + 1 \)[/tex].
### Step 5: Find the intersection of shaded regions
The solution to the system of inequalities will be the region where the shaded areas overlap.
### Step 6: Plot the solution
Let's combine everything into a comprehensive graph:
1. Plot the line [tex]\( y = 4 - x \)[/tex]. This line will have intercepts at [tex]\( (4, 0) \)[/tex] and [tex]\( (0, 4) \)[/tex].
2. Plot the line [tex]\( y = x + 1 \)[/tex]. This line will have intercepts at [tex]\( (-1, 0) \)[/tex] and [tex]\( (0, 1) \)[/tex].
To ensure clarity, let's outline both lines clearly:
[tex]\[ \begin{cases} \text{Line 1: } y = 4 - x \\ \text{Line 2: } y = x + 1 \end{cases} \][/tex]
### Step 7: Shade the regions appropriately
- For [tex]\( y \geq 4 - x \)[/tex], shade above the line [tex]\( y = 4 - x \)[/tex].
- For [tex]\( y \leq x + 1 \)[/tex], shade below the line [tex]\( y = x + 1 \)[/tex].
The overlapping shaded region will represent the set of points [tex]\((x, y)\)[/tex] that satisfy both inequalities.
### Final Graph Interpretation:
- Region above [tex]\( y = 4 - x \)[/tex] and below [tex]\( y = x + 1 \)[/tex]: This shared area represents the solution to the system.
To sum up, the graph plots two lines intersecting at some points and the intersection of the shaded areas above [tex]\( y = 4 - x \)[/tex] and below [tex]\( y = x + 1 \)[/tex] gives us the feasible region for the developed and open space in the planned community.
### Step 1: Understand the inequalities
We have the following inequalities:
1. [tex]\( x + y \geq 4 \)[/tex]
2. [tex]\( y - x \leq 1 \)[/tex]
### Step 2: Rewrite each inequality in a more familiar form
#### Inequality 1: [tex]\( x + y \geq 4 \)[/tex]
Rewriting this inequality, we get:
[tex]\[ y \geq 4 - x \][/tex]
This means, for any point [tex]\((x, y)\)[/tex] in the coordinate plane, [tex]\( y \)[/tex] must be greater than or equal to [tex]\( 4 - x \)[/tex]. The boundary line for this inequality is [tex]\( y = 4 - x \)[/tex], and the region of interest lies above this line.
#### Inequality 2: [tex]\( y - x \leq 1 \)[/tex]
Rewriting this inequality, we get:
[tex]\[ y \leq x + 1 \][/tex]
This means, for any point [tex]\((x, y)\)[/tex] in the coordinate plane, [tex]\( y \)[/tex] must be less than or equal to [tex]\( x + 1 \)[/tex]. The boundary line for this inequality is [tex]\( y = x + 1 \)[/tex], and the region of interest lies below this line.
### Step 3: Plot the boundary lines
- [tex]\( y = 4 - x \)[/tex] (from Inequality 1)
- [tex]\( y = x + 1 \)[/tex] (from Inequality 2)
### Step 4: Determine the regions to shade
- For [tex]\( y \geq 4 - x \)[/tex], shade the area above the line [tex]\( y = 4 - x \)[/tex].
- For [tex]\( y \leq x + 1 \)[/tex], shade the area below the line [tex]\( y = x + 1 \)[/tex].
### Step 5: Find the intersection of shaded regions
The solution to the system of inequalities will be the region where the shaded areas overlap.
### Step 6: Plot the solution
Let's combine everything into a comprehensive graph:
1. Plot the line [tex]\( y = 4 - x \)[/tex]. This line will have intercepts at [tex]\( (4, 0) \)[/tex] and [tex]\( (0, 4) \)[/tex].
2. Plot the line [tex]\( y = x + 1 \)[/tex]. This line will have intercepts at [tex]\( (-1, 0) \)[/tex] and [tex]\( (0, 1) \)[/tex].
To ensure clarity, let's outline both lines clearly:
[tex]\[ \begin{cases} \text{Line 1: } y = 4 - x \\ \text{Line 2: } y = x + 1 \end{cases} \][/tex]
### Step 7: Shade the regions appropriately
- For [tex]\( y \geq 4 - x \)[/tex], shade above the line [tex]\( y = 4 - x \)[/tex].
- For [tex]\( y \leq x + 1 \)[/tex], shade below the line [tex]\( y = x + 1 \)[/tex].
The overlapping shaded region will represent the set of points [tex]\((x, y)\)[/tex] that satisfy both inequalities.
### Final Graph Interpretation:
- Region above [tex]\( y = 4 - x \)[/tex] and below [tex]\( y = x + 1 \)[/tex]: This shared area represents the solution to the system.
To sum up, the graph plots two lines intersecting at some points and the intersection of the shaded areas above [tex]\( y = 4 - x \)[/tex] and below [tex]\( y = x + 1 \)[/tex] gives us the feasible region for the developed and open space in the planned community.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.