Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To factor the given quadratic expression [tex]\( 9x^2 - 25 \)[/tex] completely, we will follow a step-by-step approach:
1. Recognize the form of the expression: Notice that the given expression, [tex]\( 9x^2 - 25 \)[/tex], is a difference of squares. The difference of squares can be factored using the identity:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
2. Identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex] in the expression [tex]\( 9x^2 - 25 \)[/tex]:
- In our case, [tex]\( 9x^2 \)[/tex] is a perfect square, and so is [tex]\( 25 \)[/tex].
- We can write [tex]\( 9x^2 \)[/tex] as [tex]\( (3x)^2 \)[/tex] and [tex]\( 25 \)[/tex] as [tex]\( 5^2 \)[/tex].
3. Apply the difference of squares identity:
Given:
[tex]\[ 9x^2 - 25 \][/tex]
Write it as:
[tex]\[ (3x)^2 - 5^2 \][/tex]
Now, apply the difference of squares formula:
[tex]\[ (3x)^2 - 5^2 = (3x - 5)(3x + 5) \][/tex]
4. Verify the factors given in the multiple-choice options:
- Option 1: [tex]\( (3x + 5)(3x - 5) \)[/tex]
- Option 2: [tex]\( (3x - 5)(3x - 5) \)[/tex]
- Option 3: [tex]\( (9x + 5)(x - 5) \)[/tex]
- Option 4: [tex]\( (9x - 5)(x + 5) \)[/tex]
Comparing these with our factorization [tex]\( (3x - 5)(3x + 5) \)[/tex], we see that the correct factorization corresponds to Option 1:
Thus, the completely factored form of [tex]\( 9x^2 - 25 \)[/tex] is:
[tex]\[ (3x - 5)(3x + 5) \][/tex]
1. Recognize the form of the expression: Notice that the given expression, [tex]\( 9x^2 - 25 \)[/tex], is a difference of squares. The difference of squares can be factored using the identity:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
2. Identify [tex]\(a\)[/tex] and [tex]\(b\)[/tex] in the expression [tex]\( 9x^2 - 25 \)[/tex]:
- In our case, [tex]\( 9x^2 \)[/tex] is a perfect square, and so is [tex]\( 25 \)[/tex].
- We can write [tex]\( 9x^2 \)[/tex] as [tex]\( (3x)^2 \)[/tex] and [tex]\( 25 \)[/tex] as [tex]\( 5^2 \)[/tex].
3. Apply the difference of squares identity:
Given:
[tex]\[ 9x^2 - 25 \][/tex]
Write it as:
[tex]\[ (3x)^2 - 5^2 \][/tex]
Now, apply the difference of squares formula:
[tex]\[ (3x)^2 - 5^2 = (3x - 5)(3x + 5) \][/tex]
4. Verify the factors given in the multiple-choice options:
- Option 1: [tex]\( (3x + 5)(3x - 5) \)[/tex]
- Option 2: [tex]\( (3x - 5)(3x - 5) \)[/tex]
- Option 3: [tex]\( (9x + 5)(x - 5) \)[/tex]
- Option 4: [tex]\( (9x - 5)(x + 5) \)[/tex]
Comparing these with our factorization [tex]\( (3x - 5)(3x + 5) \)[/tex], we see that the correct factorization corresponds to Option 1:
Thus, the completely factored form of [tex]\( 9x^2 - 25 \)[/tex] is:
[tex]\[ (3x - 5)(3x + 5) \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.