At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the mean of the given frequency distribution, we follow these steps:
1. List the Scores and Frequencies:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline \text{Score, } x & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline \text{Frequency, } f & 3 & 3 & 6 & 6 & 6 & 2 & 6 & 3 \\ \hline \end{array} \][/tex]
2. Calculate the Total Frequency:
To determine the total frequency, sum up all the frequencies:
[tex]\[ \text{Total Frequency} = 3 + 3 + 6 + 6 + 6 + 2 + 6 + 3 = 35 \][/tex]
3. Calculate the Weighted Sum of Scores:
Each score needs to be multiplied by its corresponding frequency, and then all these products should be summed:
[tex]\[ \text{Weighted Sum} = (1 \times 3) + (2 \times 3) + (3 \times 6) + (4 \times 6) + (5 \times 6) + (6 \times 2) + (7 \times 6) + (8 \times 3) \][/tex]
Calculating each individually:
[tex]\[ \begin{align*} 1 \times 3 & = 3 \\ 2 \times 3 & = 6 \\ 3 \times 6 & = 18 \\ 4 \times 6 & = 24 \\ 5 \times 6 & = 30 \\ 6 \times 2 & = 12 \\ 7 \times 6 & = 42 \\ 8 \times 3 & = 24 \\ \end{align*} \][/tex]
Summing these products:
[tex]\[ \text{Weighted Sum} = 3 + 6 + 18 + 24 + 30 + 12 + 42 + 24 = 159 \][/tex]
4. Calculate the Mean:
The mean ([tex]\(\bar{x}\)[/tex]) can be calculated by dividing the weighted sum by the total frequency:
[tex]\[ \bar{x} = \frac{\text{Weighted Sum}}{\text{Total Frequency}} = \frac{159}{35} \approx 4.543 \][/tex]
Therefore, the mean of the given frequency distribution is:
[tex]\[ \boxed{4.543} \][/tex]
1. List the Scores and Frequencies:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline \text{Score, } x & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline \text{Frequency, } f & 3 & 3 & 6 & 6 & 6 & 2 & 6 & 3 \\ \hline \end{array} \][/tex]
2. Calculate the Total Frequency:
To determine the total frequency, sum up all the frequencies:
[tex]\[ \text{Total Frequency} = 3 + 3 + 6 + 6 + 6 + 2 + 6 + 3 = 35 \][/tex]
3. Calculate the Weighted Sum of Scores:
Each score needs to be multiplied by its corresponding frequency, and then all these products should be summed:
[tex]\[ \text{Weighted Sum} = (1 \times 3) + (2 \times 3) + (3 \times 6) + (4 \times 6) + (5 \times 6) + (6 \times 2) + (7 \times 6) + (8 \times 3) \][/tex]
Calculating each individually:
[tex]\[ \begin{align*} 1 \times 3 & = 3 \\ 2 \times 3 & = 6 \\ 3 \times 6 & = 18 \\ 4 \times 6 & = 24 \\ 5 \times 6 & = 30 \\ 6 \times 2 & = 12 \\ 7 \times 6 & = 42 \\ 8 \times 3 & = 24 \\ \end{align*} \][/tex]
Summing these products:
[tex]\[ \text{Weighted Sum} = 3 + 6 + 18 + 24 + 30 + 12 + 42 + 24 = 159 \][/tex]
4. Calculate the Mean:
The mean ([tex]\(\bar{x}\)[/tex]) can be calculated by dividing the weighted sum by the total frequency:
[tex]\[ \bar{x} = \frac{\text{Weighted Sum}}{\text{Total Frequency}} = \frac{159}{35} \approx 4.543 \][/tex]
Therefore, the mean of the given frequency distribution is:
[tex]\[ \boxed{4.543} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.