At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's carefully analyze the statement and options given to determine which one best describes the function [tex]\( h(t) = 210 - 15t \)[/tex].
In the standard function notation [tex]\( h(t) \)[/tex], [tex]\( h \)[/tex] is the name of the function, and [tex]\( t \)[/tex] represents the input variable. When we evaluate the function [tex]\( h \)[/tex] at a particular value of [tex]\( t \)[/tex], we get the output [tex]\( h(t) \)[/tex].
To put it more formally:
- [tex]\( h \)[/tex] is the function name.
- [tex]\( t \)[/tex] is the input, or independent variable.
- [tex]\( h(t) \)[/tex] is the output, or dependent variable.
Our task is to identify which statement accurately captures this interpretation:
1. [tex]\( h \)[/tex] is the function name; [tex]\( h(t) \)[/tex] is the input, or independent variable; and [tex]\( t \)[/tex] is the output, or dependent variable.
This statement makes a critical error by labeling [tex]\( h(t) \)[/tex] as the independent variable and [tex]\( t \)[/tex] as the dependent variable, which is incorrect.
2. [tex]\( h \)[/tex] is the function name; [tex]\( t \)[/tex] is the input, or independent variable; and [tex]\( h(t) \)[/tex] is the output, or dependent variable.
This statement is correct. It correctly identifies [tex]\( h \)[/tex] as the function name, [tex]\( t \)[/tex] as the input (independent variable), and [tex]\( h(t) \)[/tex] as the output (dependent variable).
3. [tex]\( t \)[/tex] is the function name; [tex]\( h(t) \)[/tex] is the input, or independent variable; and [tex]\( h \)[/tex] is the output, or dependent variable.
This statement incorrectly labels [tex]\( t \)[/tex] as the function name and swaps the roles of [tex]\( h(t) \)[/tex] and [tex]\( h \)[/tex].
4. [tex]\( t \)[/tex] is the function name; [tex]\( h \)[/tex] is the input, or independent variable; and [tex]\( h(t) \)[/tex] is the output, or dependent variable.
This statement also incorrectly identifies [tex]\( t \)[/tex] as the function name and labels [tex]\( h \)[/tex] as the independent variable.
Thus, the statement that best describes the function [tex]\( h(t) = 210 - 15t \)[/tex] is:
[tex]\[ \boxed{\text{h is the function name; t is the input, or independent variable; and h(t) is the output, or dependent variable.}} \][/tex]
In the standard function notation [tex]\( h(t) \)[/tex], [tex]\( h \)[/tex] is the name of the function, and [tex]\( t \)[/tex] represents the input variable. When we evaluate the function [tex]\( h \)[/tex] at a particular value of [tex]\( t \)[/tex], we get the output [tex]\( h(t) \)[/tex].
To put it more formally:
- [tex]\( h \)[/tex] is the function name.
- [tex]\( t \)[/tex] is the input, or independent variable.
- [tex]\( h(t) \)[/tex] is the output, or dependent variable.
Our task is to identify which statement accurately captures this interpretation:
1. [tex]\( h \)[/tex] is the function name; [tex]\( h(t) \)[/tex] is the input, or independent variable; and [tex]\( t \)[/tex] is the output, or dependent variable.
This statement makes a critical error by labeling [tex]\( h(t) \)[/tex] as the independent variable and [tex]\( t \)[/tex] as the dependent variable, which is incorrect.
2. [tex]\( h \)[/tex] is the function name; [tex]\( t \)[/tex] is the input, or independent variable; and [tex]\( h(t) \)[/tex] is the output, or dependent variable.
This statement is correct. It correctly identifies [tex]\( h \)[/tex] as the function name, [tex]\( t \)[/tex] as the input (independent variable), and [tex]\( h(t) \)[/tex] as the output (dependent variable).
3. [tex]\( t \)[/tex] is the function name; [tex]\( h(t) \)[/tex] is the input, or independent variable; and [tex]\( h \)[/tex] is the output, or dependent variable.
This statement incorrectly labels [tex]\( t \)[/tex] as the function name and swaps the roles of [tex]\( h(t) \)[/tex] and [tex]\( h \)[/tex].
4. [tex]\( t \)[/tex] is the function name; [tex]\( h \)[/tex] is the input, or independent variable; and [tex]\( h(t) \)[/tex] is the output, or dependent variable.
This statement also incorrectly identifies [tex]\( t \)[/tex] as the function name and labels [tex]\( h \)[/tex] as the independent variable.
Thus, the statement that best describes the function [tex]\( h(t) = 210 - 15t \)[/tex] is:
[tex]\[ \boxed{\text{h is the function name; t is the input, or independent variable; and h(t) is the output, or dependent variable.}} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.