At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's carefully analyze the statement and options given to determine which one best describes the function [tex]\( h(t) = 210 - 15t \)[/tex].
In the standard function notation [tex]\( h(t) \)[/tex], [tex]\( h \)[/tex] is the name of the function, and [tex]\( t \)[/tex] represents the input variable. When we evaluate the function [tex]\( h \)[/tex] at a particular value of [tex]\( t \)[/tex], we get the output [tex]\( h(t) \)[/tex].
To put it more formally:
- [tex]\( h \)[/tex] is the function name.
- [tex]\( t \)[/tex] is the input, or independent variable.
- [tex]\( h(t) \)[/tex] is the output, or dependent variable.
Our task is to identify which statement accurately captures this interpretation:
1. [tex]\( h \)[/tex] is the function name; [tex]\( h(t) \)[/tex] is the input, or independent variable; and [tex]\( t \)[/tex] is the output, or dependent variable.
This statement makes a critical error by labeling [tex]\( h(t) \)[/tex] as the independent variable and [tex]\( t \)[/tex] as the dependent variable, which is incorrect.
2. [tex]\( h \)[/tex] is the function name; [tex]\( t \)[/tex] is the input, or independent variable; and [tex]\( h(t) \)[/tex] is the output, or dependent variable.
This statement is correct. It correctly identifies [tex]\( h \)[/tex] as the function name, [tex]\( t \)[/tex] as the input (independent variable), and [tex]\( h(t) \)[/tex] as the output (dependent variable).
3. [tex]\( t \)[/tex] is the function name; [tex]\( h(t) \)[/tex] is the input, or independent variable; and [tex]\( h \)[/tex] is the output, or dependent variable.
This statement incorrectly labels [tex]\( t \)[/tex] as the function name and swaps the roles of [tex]\( h(t) \)[/tex] and [tex]\( h \)[/tex].
4. [tex]\( t \)[/tex] is the function name; [tex]\( h \)[/tex] is the input, or independent variable; and [tex]\( h(t) \)[/tex] is the output, or dependent variable.
This statement also incorrectly identifies [tex]\( t \)[/tex] as the function name and labels [tex]\( h \)[/tex] as the independent variable.
Thus, the statement that best describes the function [tex]\( h(t) = 210 - 15t \)[/tex] is:
[tex]\[ \boxed{\text{h is the function name; t is the input, or independent variable; and h(t) is the output, or dependent variable.}} \][/tex]
In the standard function notation [tex]\( h(t) \)[/tex], [tex]\( h \)[/tex] is the name of the function, and [tex]\( t \)[/tex] represents the input variable. When we evaluate the function [tex]\( h \)[/tex] at a particular value of [tex]\( t \)[/tex], we get the output [tex]\( h(t) \)[/tex].
To put it more formally:
- [tex]\( h \)[/tex] is the function name.
- [tex]\( t \)[/tex] is the input, or independent variable.
- [tex]\( h(t) \)[/tex] is the output, or dependent variable.
Our task is to identify which statement accurately captures this interpretation:
1. [tex]\( h \)[/tex] is the function name; [tex]\( h(t) \)[/tex] is the input, or independent variable; and [tex]\( t \)[/tex] is the output, or dependent variable.
This statement makes a critical error by labeling [tex]\( h(t) \)[/tex] as the independent variable and [tex]\( t \)[/tex] as the dependent variable, which is incorrect.
2. [tex]\( h \)[/tex] is the function name; [tex]\( t \)[/tex] is the input, or independent variable; and [tex]\( h(t) \)[/tex] is the output, or dependent variable.
This statement is correct. It correctly identifies [tex]\( h \)[/tex] as the function name, [tex]\( t \)[/tex] as the input (independent variable), and [tex]\( h(t) \)[/tex] as the output (dependent variable).
3. [tex]\( t \)[/tex] is the function name; [tex]\( h(t) \)[/tex] is the input, or independent variable; and [tex]\( h \)[/tex] is the output, or dependent variable.
This statement incorrectly labels [tex]\( t \)[/tex] as the function name and swaps the roles of [tex]\( h(t) \)[/tex] and [tex]\( h \)[/tex].
4. [tex]\( t \)[/tex] is the function name; [tex]\( h \)[/tex] is the input, or independent variable; and [tex]\( h(t) \)[/tex] is the output, or dependent variable.
This statement also incorrectly identifies [tex]\( t \)[/tex] as the function name and labels [tex]\( h \)[/tex] as the independent variable.
Thus, the statement that best describes the function [tex]\( h(t) = 210 - 15t \)[/tex] is:
[tex]\[ \boxed{\text{h is the function name; t is the input, or independent variable; and h(t) is the output, or dependent variable.}} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.